

Energy Harvesting and Self-Powered Sensing for Next-Generation "Unaware-ables" and IoT

Patrick Mercier University of California, San Diego

Wearables: an exciting high-growth market

 \Rightarrow

UCSD

Why aren't we there now?

Size & Usability:

Need to develop sensors that are small & seamlessly integrated into daily life

Battery Life:

Need ultra-low-power and/or energy harvesting to minimize re-charging

Utility:

Need to develop sensors that are actually useful

Mission:

Address these issues through innovative transdisciplinary research

Wearables Roadmap

2021

2023 2025

Why aren't we there now?

Size & Usability:

Need to develop sensors that are small & seamlessly integrated into daily life

Battery Life:

Need ultra-low-power and/or energy harvesting to minimize re-charging

Utility:

Need to develop sensors that are actually useful

Mission:

Address these issues through innovative transdisciplinary research

Pushing the frontier on new wearable sensing technologies

Non-invasive glucose and alcohol sensing

Real-time saliva sensors by a sensor but the salid Bio-energy harvesting

Physiochemical analysis in saliva

Startup company: TRAQ

Hybrid physiochemical & electrophysiological sensing

S. Imani et al., Nature Communications'16

First demonstration of real-time ECG+lactaterecording

7

UCSD

Major limiter in IoT devices: battery size / battery life

UCSD

Powering IoT and Wearables in Scaled-CMOS

Conventional

PMU*: Power Management Unit with or without off-chip inductor

Li-ion Fully-Integrated PMU Challenges in 28nm FDSOI

 \Rightarrow

Towards Fully-Integrated Li-ion PMU in Scaled CMOS

UCSD

S.S. Amin et al., JSSC'19

Conventional 4-Level Converter Area Penalty

UCSD

Driver Architecture

Center for
Wearable **Sensors**

Measurement Results

Towards Small Form-Factor Single-Inductor Converters

UCSD

S.S. Amin et al., ISSCC'18/JSSC'18

Time-Shared Inductor for Multi-Input Harvesting

Challenge: decoupling MPPT and Load Regulation

UCSD

MISIMO Event Driven Controller

S.S. Amin et al., ISSCC'18/JSSC'18

Center for
Wearable **Sensors**

MISIMO Measurement Results

Hybrid SIMO

testing

MOMCaps

¹⁴⁷⁹μ^m ¹⁸⁴μ^m

3

3 | M₄

4

455 μm230 μm

7 | M₆| | M₅ MfwMLd1MLd2MLd3**1**1 **5**

Center for Wearable **Sensors**

Harvesting energy from human perspiration via lactate biofuel cells

UCSD

Watch "ON"

21 *J. Wenzhao et al., J. Mat. Chem., 2014*

Increasing BFC power density

A.J. Bandodkar et al., Energy & Environmental Science, 2017

Self-powered glucose sensing

A.F. Yeknami et al., ISSCC/JSSC, 2018

Inductor-first conversion

Split into two half-sized inductors and stack at input

The input capacitor is now flying

All passives are stacked at input

Inductors are placed at the low-current side of the converter

Center for
Wearable **Sensors**

PS3B Measurement Results

Top-side

2.33mm **Bottom-side**

Li-ion-compatible SMML Converter

- ❖ A symmetric modified multilevel ladder (SMML) converter:
	- Consists of two sides each with 2 capacitors and 6 switches.

❖ **Features:**

- **Stell becreased conduction losses** due to state inherent phase interleaving.
- **V** Minimum blocking voltage on all switches/capacitors.
- \checkmark No need for voltage balancing modules flying capacitors are naturally stable.
- \checkmark All necessary supplies are generated internally to power drivers and level shifters.

Center for Wearable **Sensors**

SMML Measurement Results

The inductor and the output capacitor are mounted under the chip

CMOS Power Amplifier Voltage Challenge

Idea: utilize many efficient ~1V class-D PAs and combine power with transformers

Problem: three voltage conversion stages leads to cascaded losses:

$$
\eta_{tot} = \eta_{DC-DC} \eta_{PA} \eta_{xfmr} < 30\%
$$

Partial Solution: PA Stacking

Stack entire class-D PAs for current re-use:

~100% efficient *implicit* DC-DC conversion

(each PA sees only $\mathit{V_{BA7}}\!(2)$

Solid-State RF Impedance Transformation

Idea: generate large RF voltages directly from a battery using ~1V devices by stacking PAs, then flying subsequent PAs between the rails of the prior stages in a *House-of-Cards* Topology

Solid-State RF Impedance Transformation

Idea: generate large RF voltages directly from a battery using ~1V devices by stacking PAs, then flying subsequent PAs between the rails of the prior stages in a *House-of-Cards* Topology

L.G. Salem et al., JSSC'17

31

UCSD

Solid-State RF Impedance Transformation

Idea: generate large RF voltages directly from a battery using ~1V devices by stacking PAs, then flying subsequent PAs between the rails of the prior stages in a *House-of-Cards* Topology

32

UCSD

UCSD

House-of-Cards (HoC) Schematic

L.G. Salem et al., JSSC'17

Measurement results: PAE

65nm LP1.2V transistorsDirect 4.8V Li-ion battery connection

>40% battery-to-RF power-added efficiency at both peak power (23dBm) and at 6dB backoff

L.G. Salem et al., JSSC'17

A nW Wake-up Receiver

UCSD

High *R***in ED supports high passive gain front-end w/ high-***Q* **filtering at low power**

H. Jiang / P.-H. Wang et al., ISSCC'17 / JSSC'18

WuRX Measurement Results

- Power consumption: 4.5nW
- Sensitivity: -69dBm
- Wake-up latency: 53ms

Most standards use complex modulation at high data rates \rightarrow difficult to build an ultra-low-power RX w/ good sensitivity

Back-channel communication

N. E. Roberts et al., ISSCC'16

Hack a standard-compliant signal to look like a simpler, lower bandwidth modulation

An Interference-Robust BLE-Compliant WuRX

BLE advertising channels and wireless co-existance $@$ 2.4GHz ISM band **BLE advertising event structure** Direct channel-filtering using 0.25mm² single-die 3-channel FBAR RSSI TX low duty cycle mode single adv. event≤20ms Ch. 37 $|$ Ch. 38 $|$ $(h.39)$ Time ≤ 10 ms ≤ 10 ms Ch. 37 **WLAN** $Ch.38$ **WLAN WLAN** Ch. 39 Freg 2402MHz $ch.1$ 2426MHz $Ch.6$ $Ch. 11$ 2480MHz Matching network **IF LNA BB PGA+LPF** Comparator Wake-up Frequency-hoping BB **000-121-DSP** between advertising $f_{\rm LO,RF}$ $f_{\text{LO,IF}}$ channels enables **TPLL** Divider **Oversampling** IF Osc Single-die interference-resilient 3-channel FBAR **Channel selection** detection

P.-H. Wang et al., ISSCC'19

UCSD

UCSD

An Interference-Robust BLE-Compliant WuRX

Sensitivity: -85dBm @ 220μW

 \Box 27.5dB better than prior-art

 \Box **Latency:** 200μs-to-1.47ms

 \Box **SIR:** at least -60dB SIR (limited by measurement setup)

P.-H. Wang et al., ISSCC'19

39

Conclusions

- Next generation IoT devices require:
	- New sensors and sensing techniques
	- Small form factors
	- Long/infinite battery life \rightarrow often limited by radios
- Meet these needs through:

Acknowledgements

National Institute of **Biomedical Imaging** and Bioengineering

November, 2016

November

019

FOUNDATION

UC San Diego

JACOBS SCHOOL OF ENGINEERING

Center for Wireless Communications

41