

Miniaturised Energy Harvesting @ RISE

Cristina Rusu

Senior Expert at RISE cristina.rusu@ri.se

Tuesday, April 5, 2022

Miniaturised Energy Harvesting @ RISE

- Introduction
- Examples of applications

Miniaturised Energy Harvesting @ RISE

Introduction

Examples of applications

Sweden's research institute

Business and innovation areas

RI Se

Smart hardware dept. - Expertise

Smart hardware dept. - Expertise

KI SE

Energy Harvesting vs Cables / Batteries

• Too much weight

• Not easily accessible

Inaccessible

- Large quantities
- Ultra-low power
- Low data rate
- Low duty cycle

Energy Harvesting technologies @ RISE

Kinetic energy – Piezo, Electromagnetic, Triboelectric

Industry

- Automotive
- Mining
-

UDI-2 'Energy Toolkit', Sephmet ECSEL 'Energy ECS'; H2020 'Symphony' Energy harvesting for automotive

□ Maintenance

- Pump, compressor
- Gas turbine, engine
-

Life science

- Pacemaker
- Textile, wearable

H2020 'Smart Memphis' FP7 'WIISEL'

Energy Harvesting technologies @ RISE

Thermal

- Gas turbine, engine
- Hydraulics
-

RFID

- Recycling, Identification
- Environment
- ...

- VINNOVA
- Robust identification Climate control in greenhouse

Printed electronics & sensors

PVDF Triboelectricity in cellulose & lignin

valerio.beni@ri.se

Introduction

• Applications examples - Piezo

Our prototypes for Energy Autonomous Sensors

Ex #1: Proof of Concept: Pump maintenance

> Pump characteristics for harvester design and

Raw acceleration Y-led on pump

Amplitude spectrum over frequency

Tuned harvester setup attached to pump

! Correct mounting of measurement device for vibration spectra

Ex #1: Proof of Concept: Pump maintenance

Piezo element

- MIDE /Piezo

Power management

- Analog Devices/Linear Technology LTC3588

RI. SE

Bluetooth beacon

Pokit multimeter

Communication

- LED
- Bluetooth beacon (RSL10 SIP) + Samsung App
- Pokit multimeter + Samsung App
- Modified for harvester application

Sensing

- Turn on LED
- Harvested voltage
- Vibration frequency
- Vibrations changes

Ex #1: Proof of Concept: Pump maintenance

2,331

RI SE

Piezo harvester powering wireless sensor on Gas Turbine

MIDE EH (80-175 Hz)

Many, different resonances and in diverse directions on a gas turbine

✓ Harvester tested up to 100°C
! Cables → ✓ Multi core (damps vibrations)
! Mounting support - eigenfrequency

SMA

EnerHa

2022

Open circuit voltage output from a backfolded harvester on ex-service engine

Ex Gas Turbine #2

Piezoelectric harvester

- ! 4 supercapacitors connected in series
- I Discharge while powering Wi-Fi \leftrightarrow Rechargeable battery

RISE

2022

- MEMS-based PZT harvester simulation / design
- Mechanical & electrical harvester characterisation

Ex #3: Pacemaker

Resonance frequency: 10- 30 Hz Acceleration: <1 g Size: 0.3 - 1 cm³ Needed power: 10 – 20 μ W

Heart movements

Ex #3: Pacemaker

Challenge

SMEMS design \leftrightarrow thin PZT, low

- Dequeingy pressure encapsulation
- Heart measurements \leftrightarrow EH position
- Excitation data \leftrightarrow shaker pre-compensation

- Meander, sample

Meander, sample 2

1400

21

cantilever, sample 1
cantilever, sample 2

1200

! Investment: prototype \rightarrow commercialization

- Reproducibility
- Reliability

2022

EU H2020 - Symphony -

2020-2024

Smart Hybrid Multimodal Printed Harvesting of Energy

RISE: Magneto electric harvester characterisation

EU H2020 - Symphony -

Smart Hybrid Multimodal Printed Harvesting of Energy

Sensor skin for wind turbine condition monitoring (*Copyright: Eologix sensor technology GmbH*)

Smart floor (Copyright: Joanneum Research–MATERIALS)

Automated pressure monitoring of bike tubes (Copyright: Tubolito GmbH)

EU H2020 - Symphony -

Smart Hybrid Multimodal Printed Harvesting of Energy

EU H2020 - Symphony -

Smart Hybrid Multimodal Printed Harvesting of Energy

Magnetoelectric coupling

H2020 ECSEL – Energy ECS -

Smart and secure energy solutions for future mobility

Develop **technologies** to improve **digitalization** of **e-mobility systems** and related **energy solutions**, forming the basis for future businesses and services. https://energyecs.eu

2021 - 2024

H2020 ECSEL – Energy ECS -

Smart and secure energy solutions for future mobility

UC1 Drone Zones: Autonomous Drone Ecosystem on Mobile platforms

- UC2 Smart containers in intermodal transport
- UC3 Smart grid with e-mobility
- UC4 Vehicle to grid
- UC5 Self-powered system in tyres

UC6 Autonomous driving of EV to charging station

H2020 ECSEL - Energy ECS -

Smart and secure energy solutions for future mobility

Harvester system Challenges

- A component is not a system
- Very light & small size
 - Flexible energy harvesters (piezo, tribo)
 - Enough energy
- Robustness
 - Electrical contacts
 - Mounting

Our Conclusions

- In many applications: energy harvesting won't replace batteries but... there is interest to increase battery lifetime and/or reduce cables.
- > Market acceptance is very much application dependant:
 - Chosen harvester solution ↔ Energy source
 - Component is not a system
 - Implementation is complex
- Energy Harvesting application is still new & requires significant progress & robustness
 - Power density
 - Ultra low power electronics (e.g. high voltage input)
 - Energy storage devices (e.g. current leakages)
 - Wireless communication consumption

Thank you

Questions?

Acknowledgment: All my colleagues and financiers

cristina.rusu@ri.se