Herbert Wertheim College of Engineering UNIVERSITY of FLORIDA

Electrodynamic Wireless Power Transfer for Charging through Conductive Media

Prof. David P Arnold

Interdisciplinary Microsystems Group Dept. of Electrical and Computer Engineering University of Florida

POWERING W ENGINEER TO TRANSFORM TH

Outline

- •Wireless Power Transfer (WPT) Background
- \bullet Electrodynamic WPT (EWPT)
	- **–** Principle and Advantages
	- **–** Prior Works
- • Miniature EWPT Receivers
	- **–** Electrodynamic, Piezoelectric, & Dual-transduction
- •Summary & Comparison

Wireless Power Transfer

WPT Utopia

- • The "Quadrilemma"
	- **–** useful power levels
	- **–** with relatively good efficiency
	- **–** to compact receivers
	- **–** over extended distances
- • Once charging at a distance is obtained…
	- **–** Safety limits / human EM exposure
	- **–** "Cluttered" environments
	- **–** Position & orientation independence

WPT Methods

EWPT Principle

- • The receiver magnet is excited by time-varying magnetic field generated by a transmitter "*Electrodynamic Transduction*" <--> Interaction between permanent magnet and coil
- •Mechanical energy \rightarrow Electrical power at receiver by one or more electromechanical transduction schemes e.g., Electrodynamic and Piezoelectric

Prior Works

- • Macroscale EWPT receiver
	- **–** 13.5 cm3 prototype
	- **–** Few volts (open-circuit) at 21 Hz

Relative independence of position and orientation (even with clutter)

Prior Works

 Transmission through body using rotating magnet transmitter

Transmission through desktop computer using coil transmitter

Electrodynamic EWPT Receiver

Electrodynamic EWPT Receiver

- • Lumped Element Modeling (LEM)
	- **–** Equivalent electrical circuit model

Tx electrodynamic transduction coefficient

$$
K_T = \frac{\tau_{mag}}{I_S} = \frac{V_{mag}}{\dot{\theta}} \quad \text{N.m.A-1 or V.s.rad-1}
$$

Rx electrodynamic transduction coefficient

$$
K_R = \frac{\tau_{ind}}{I_L} = \frac{V_{ind}}{\dot{\theta}} \quad \text{N.m.A-1 or V.s.} \text{rad-1}
$$

- Torque on the Rx magnets
\n
$$
\tau_{mag} = |\vec{m} \times \vec{B}_z| = \frac{B_r}{\mu_0} v_{mag} B_z
$$

• Receiver system performance analysis using LEM **–** Simplified equivalent circuit

-
- • Assumed an ideal (controlled) torque source •
- \bullet $\;$ Rx coil inductance is neglected $(\omega L_R \ll R_R)$ •• Complex Z_L is replaced with resistive load R_L
- **–**Using standard circuit analysis, frequency-dependent load voltage

$$
V_L = \frac{\tau_{mag} K_R}{\left(b + j\omega J + \frac{k}{j\omega}\right)(R_R + R_L) + K_R^2} R_L
$$

Case II: Resonance

$$
V_L\Big|_{R_L=\infty} = \frac{\tau_{mag}K_R}{\left(b+j\omega J + \frac{k}{j\omega}\right)}
$$
\n
$$
V_L\Big|_{\omega=\omega_r} = \frac{\tau_{mag}K_R}{b(R_R + R_L) + K_R^2}R_L
$$
\n
$$
V_{opt} = V_L\Big|_{\omega=\omega_r} = V_L\Big|_{\omega=\omega_r} = \frac{\tau_{mag}K_R}{2b}
$$
\n
$$
P_L\Big|_{\omega=\omega_r} = \frac{V_L^2}{R_L}
$$
\n
$$
P_{max} = P_L\Big|_{\omega=\omega_r} = \frac{\tau_{mag}^2K_R^2}{4b^2R_{L,opt}}
$$

UF

Case I: Open-circuit

Case III: Resonance + R_{opt}

Key parameters

Electrodynamic EWPT Receiver

- • Microfabrication of silicon suspension
	- **–**Through-etching a 300 μm-thick 4-inch Si wafer via DRIE
- •Prototype assembly

UF

- **–** NdFeB magnets magnetized after assembly using pulse magnetizer
- **–** Assembled within a PCB for characterization

Magnets assembled on spacers

Electrodynamic EWPT Receiver

•Characterization and model validation

 0.5

UF

740

760 780 800 820 840 860 880 900

Experimental setup

- 821 Hz resonance
- Underdamped 2nd-order system
- **–**High Q (= 165 in air)

Load voltage & Power vs. load @ resonance

V & P vs. B-field $@$ resonance w/ R_{L-opt}

Strong electrodynamic coupling

Coupling strength $\nu = 9$

Frequency (Hz)

920

EWPT System Demo

•Wirelessly Rechargeable AA Battery

•System-level integration

Exploded view of the AA battery prototype

Photographs of the system

EWPT System Demo

PMC circuit diagram Power Management Circuit •**Power Signal Pad** Diode Bridge Rectifier • TI BQ25570 energy-harvesting chip •LBOOST VOC SAMP THE SAME vsto **VRAT** com_a ENN LBUCK **VOUT EN Voltage Programming Resistors** *VRAT OR* er Signal Pad Target VBAT OV: 4.2 V Target VBAT_OK: 3 V Target VBAT_OK_HYST: 3.3 V Target VOUT: 1.5 V **VOLT SE** 3.8 120 3.6 100 3.4 80 3.2 DC Power (uW) $\begin{array}{c}\n\text{Voltage (V)}\\
\text{V} = 2.8\n\end{array}$ 60 40 2.6 20 Open-Circuit 2.4 $50 k\Omega$ 100 $k\Omega$ $2.2₄$ - Experimental Data Ω $\mathbf{1}$ $\overline{2}$ $\mathbf{3}$ $\bf{4}$ 5 6 $\overline{7}$ Linear Extrapolation Time (min) Ω 5 10 15 25 30 35 Time (hr) DC power across the capacitor vs time for various resistive loadsCharge cycle for the lithium polymer battery

Piezoelectric EWPT Receiver

Piezoelectric EWPT Receiver

- • Lumped Element Modeling (LEM)
	- **–** Equivalent electrical circuit model

– Frequency-dependent load voltage

UF

$$
V_L = \frac{\Gamma_P \tau_{mag}}{\left(b + j\omega J + \frac{k}{j\omega}\right)(1 + j\omega C_0 R_L) + \Gamma_P^2 R_L} R_L
$$

Experimental validation

•

Electrodynamic EWPT Receiver

•Characterization and model validation

Frequency response @ 4 cm Power vs. distance @ resonance w/ R_{l-opt}

Dual-transduction EWPT Receiver

- • Combined with ED and PE transducers
	- **–**Two piezoelectric transducers (series connected)
	- **–** One electrodynamic transducer
	- **–**Both transducers operate simultaneously
	- **–**Torsional operation at \sim 744 Hz

Lumped Element Model (LEM)

- • Equivalent electrical circuit
	- **–** Torque source is either a Helmholtz coil pair or multi-turn single solenoid coil
	- **–**Transformer couples the PE transducer
	- **–** Gyrator couples ED transducer

$$
\tau_{mag} = \frac{B_r}{\mu_0} v_{mag} B_z
$$
\n
$$
k = (1 - \kappa^2) k_0
$$
\n
$$
K_R = \frac{V_{ED}}{\dot{\theta}}
$$
\n
$$
C_0 = (1 - \kappa^2) C
$$
\n
$$
F_P = \sqrt{\kappa^2 k C}
$$
\n
$$
\kappa^2 = 1 - (f_{r-sc}/f_{r-oc})^2
$$

–The voltages across corresponding load resistances

$$
V_{L-PE} = \frac{\tau_{mag} F_P R_{L-PE}}{(1 + j\omega C_0 R_{L-PE}) \left[\left(b + j\omega J + \frac{k}{j\omega} \right) + \frac{\Gamma_P^2 R_{L-PE}}{1 + j\omega C_0 R_{L-PE}} + \frac{K_R^2}{R_R + R_{L-ED}} \right]}
$$

 $\overline{}$

$$
V_{L-ED} = \frac{\tau_{mag} K_R R_{L-ED}}{(R_R + R_{L-ED}) \left[\left(b + j\omega J + \frac{k}{j\omega} \right) + \frac{\Gamma_P^2 R_{L-PE}}{1 + j\omega C_0 R_{L-PE}} + \frac{K_R^2}{R_R + R_{L-ED}} \right]}
$$

 P_{FD} = V_{L-ED}^2 R_{L-ED}

Lumped Element Model (LEM)

•Four special cases under various harmonic excitation and load conditions

Case I: PE open-circuit with ED open

Case III: ED open-circuit with PE open

Case II: PE open-circuit with ED short

Case IV: ED open-circuit with PE short

Prototype Fabrication

Fabrication process flow Fabricated and assembled prototype

Experimental Test Setup

test

70 5 Case I (Sim.) Case I (Meas.) $rac{56}{5}$ PE Voltage (V)
N Case II (Sim.) Case II (Meas.) - 8 -Case III (Sim.) Voltage Case III (Meas.) 42 Case IV (Sim.) $-\Theta$ - Case IV (Meas.) 品 28 **RMS** RMS $\overline{14}$ Ω Ω 710 720 740 750 780 730 760 770 Frequency (Hz)

No-load voltage vs. frequency $@$ 50 μT_{rms}

- **–** Linear behavior with Q = 90 (in air)
- **–** 744.8 Hz for Cases I, II & III
- **–** No effect on resonance for ED loading condition
- **–** 742.6 for Case IV (while PE shorted)

Load voltage & Power vs. load resistance @ resonance

- **–**ED loading does not affect the resonance
- **–** However, controls the PE amplitude

ED load voltage vs. frequency $@$ 50 μT_{rms} w/ R_{L-ED-opt}

- **–** PE loading controls the resonance
- **–** New resonance is obtained when both transducers are at their respective *RL-opt*

<code>PE</code> and ED load power vs. magnetic field @ resonance $\,$ $\,$ Simulated total (PE+ED) power vs. load @ 120 <code>µT $_{\rm rms}$ & 743.6 Hz</code>

- **–**Power increases with magnetic fields
- **–** Nonlinear behavior at higher fields due to
	- •Spring stiffening effect
	- •Nonlinear piezoelectric effect
	- Non-constant $\mathcal{K}_{\mathcal{R}}$

Max. 65 µW avg. power $R_{L\text{-PE-opt}}$ = 580 kΩ • $rac{R_{L>RE}}{R_{L>DE}} \approx 600 \, k\Omega$ 70 $R_{L-ED-opt}$ = 230 Ω •Total Average Power (μ W) $R_{L-ED} = 160 \Omega$ 60 50 Current status 63 µW 40 30 500 400 1000 ED Load Resistance (1) 800 600 400 bud
PE Load Resistance (ks) 100 200 $\mathbf{0}$ $\mathbf{0}$

- **–** Strongly correlated with the strength of electromechanical coupling of the transducers
- **–**Should be carefully considered in future designs

•Power vs. distance using multi-turn single solenoid coil $@$ resonance with $R_{\text{L-opt}}$

Charging through Conductive Media

Through Metal

Through Humans

Charging through Conductive Media

Dual Transduction Receiver for Underground WPT

Charging through Conductive Media

Dual Transduction Receiver charging through Tissue

Summary & Comparison

- •Designed, modeled and experimentally verified various EWPT systems
- •Volume-efficient, low-profile, chip-like designs
- •Application in wearables and implantable medical devices

Acknowledgements

• NSF Multi-functional Integrated System Technology (an NSF I/UCRC)

Innovating more than Moore technologies for smart systems in the Internet of Things era.

•Internet of Things for Precision Agriculture (IoT4Ag)

The Internet of Things for Precision Agriculture an NSF Engineering Research Center

•Interdisciplinary Microsystems Group

•Dr. Arnold's group

Hybrid Electromechanical Transformer

Abstract—This paper presents a hybrid electromechanical transformer that passively transfers electrical power between galvanically isolated ports by coupling electrodynamic and piezoelectric transducers. The use of these two complementary electromechanical transduction methods along with a high-Q mechanical resonance affords very large transformations of voltage at particular electrical frequencies. A chip-size prototype is designed, simulated. fabricated and experimentally characterized. The 7.6 mm \times 7.6 mm \times 1.65 mm device achieves open-circuit voltage gains of 31.4 and 48.7 when operating as step-up transformer at 729.5 Hz and 1015 Hz resonance frequencies, respectively. In one operational mode, the system shows a minimum power dissipation of only $0.9 \mu W$ corresponding to a power conversion efficiency of 11.8 %. A practical application of the hybrid transformer is demonstrated through an AC-DC step-up converter. When using a 1015 Hz input signal of only 209 mV $_{rms}$ and 2.4 mA $_{rms}$, the step-up converter outputs 5.3 V_{DC}.

