Energy Scavenging for Ocular Microsystems

6/26/2024

Prof. Carlos H. Mastrangelo University of Utah Salt Lake City, UT USA

Outline

- Ocular microsystems what are they ?
- Physical and Energy constraints
- Low-Profile Ocular μ-Systems (LPOμS)
- Power scavenging methods
- Thin power packs
- Summary

What is an Ocular Microsystem ?

- A microsystem that is <u>on top and in contact with eyes</u>
- Some Ocular-µS applications
 - Vision correction devices (smart contacts)
 - Medical diagnostics sensors (glucose, pressure, etc)
 - Ocular drug delivery devices
 - Augmented reality displays
 - Video/Audio Recording devices

Ocular Microsystems Requirements

- Eyeball is ≈ 22 mm in diameter
- All components must fit on top of sclera
- Sclera area ≈ 200 mm²
- μ -system thickness \leq 1 mm to fit comfortably under eyelid
- Flexible soft substrate is preferred
- Substrate must allow for oxygen permeation
- μ-system biocompatible encapsulation
- μ-system in direct contact with salty eye tears
- ≤ \$1000 USD cost target with
- 6 to 12 month lifetime acceptable
- Ocular μ-system must be removed daily
- High resistance to tear during daily removal and placement handling
- All require a power source
- Means of wireless communication
- No power transfer wires

UNIVERSI OF UTAH[®]

Examples of Ocular Microsystems

Tear Glucose Sensing Lens

Smart silicon chip

Silicon chip for energy Interconnections

3 mm

Intraocular Pressure Sensing: SENSIMED Triggerfish

Augmented Reality Contact Lens: Mojo Vision (defunct)

Light-Modulated Lens for Aniridia Treatment

Radiofrequency antenna

Drug Delivery

Smart Contact Lens for Vision Correction

- 2. Park, J. et al. Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Sci. Adv. 4, eaap9841 (2018).
- 3. <u>https://spectrum.ieee.org/augmented-reality-in-a-contact-lens</u> <u>https://www.mojo.vision/</u>
- 4. Keum, D. H. et al. Wireless smart contact lens for diabetic diagnosis and therapy. Sci. Adv. 6, eaba3252 (2020).
- 5. Zhu, Y. et al. Lab-on-a-Contact Lens: Recent Advances and Future Opportunities in Diagnostics and Therapeutics. Adv. Mater. 34, 2108389 (2022).

Examples of Ocular Microsystems

Intraocular Pressure Sensing: SENSIMED Triggerfish

Augmented Reality Contact Lens: Mojo Vision (defunct)

Tear Glucose Sensing Lens

Light-Modulated Lens for Aniridia Treatment

Drug Delivery

Smart Contact Lens for Vision Correction

- 2. Park, J. et al. Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Sci. Adv. 4, eaap9841 (2018).
- 3. <u>https://spectrum.ieee.org/augmented-reality-in-a-contact-lens</u> <u>https://www.mojo.vision/</u>
- 4. Keum, D. H. et al. Wireless smart contact lens for diabetic diagnosis and therapy. Sci. Adv. 6, eaba3252 (2020).
- 5. Zhu, Y. et al. Lab-on-a-Contact Lens: Recent Advances and Future Opportunities in Diagnostics and Therapeutics. Adv. Mater. 34, 2108389 (2022).

Smart Contact Lenses (SCL)

Presbyopia:

- Gradual loss in the ability of the eye to focus
- Presbyopia results in the inability to focus on nearby objects
- Age related refractive disorder!

Presbyopia affects:

- **25%** of the world's population!
- **1.8 billion** people (Fricke, 2018).

1. Bailey, J., Morgan, P. B., Gleeson, H. F. & Jones, J. C. Switchable Liquid Crystal Contact Lenses for the Correction of Presbyopia. Crystals 8, 29 (2018)

Presbyopia Correction with Smart Contact Lenses

Smart Contacts System needs:

- **1. μW varifocal lenses**
- 2. Paper-thin light level, orientation and object distance micro sensors
- 3. Thin photovoltaic cells with power management circuits
- 4. Paper-thin embedded μW micro-processors and communications circuits.

Current Version SCL Assembly (WIP)

7 mm

THE

UNIVERSI OF UTAH®

- Currently around 2 mm thick
- Implemented using origami+ COTS
- Custom varifocal LCD lens
- Built in vergence sensor
- Future versions require thinned microchips \$\$

SCL System Energy Consumption and Response Time

Task	Left Eye		Right Eye	
(PWM is active at each step)	Response Time	Energy Consumption	Response Time	Energy Consumption
Magnetometer Read	608 µs	1.29 μJ	608 µs	1.29 μJ
Magnetometer Corrections	41 µs	67.78nJ	41 µs	67.78 nJ
Magnetic Field Data Transmit	2552 μs	19.54 μJ		
Magnetic Field Data Receive			2490 us	15.28 uJ
Accommodation Stimulus Calculation			52 us	87.69 nJ
Accommodation Stimulus Transmit			2472 us	17.95 uJ
Accommodation Stimulus Receive	2410 µs	13.2 μJ		
Accommodation Error Calculation and PWM setup	15 μs	25.85 nJ	15 µs	25.85 nJ
Internal µC PWM	994 ms	367. 38 µJ	994 ms	367.38 µJ
Total (internal PWM)	1 s	401.08 μJ	1 s	401.08 μJ
Total Energy/Day	12 hrs	17 J	12 hrs	17 J

Current Li-Ion Rechargeable Battery Tech

- 0.5 mm-thick battery volume
 ≈ 95 mm³
- $E_{batt} \approx \mathbf{128} \, \mathbf{J}$

Average load over 12 hrs

• $P_{avg} \approx 3 \text{ mW}$

•
$$V_{batt} = 3 V$$

•
$$I_{avg} \approx 1 \text{ mA}$$

Battery power is sufficient for low power burst BLE communications

OF UTAH®

- Would like improved battery tech with higher volumetric energy density
- All ocular microsystems operate on very low power
- Where is the energy coming from ??

Possible LPOµS Energy Sources

• Physical Sources

- Photovoltaics
 - Solar cells
- Wireless RF transfer
- Bio-mechanical motion
 - Electrostatic generator
 - Magnetic induction
- Eye Tear Hydrovoltaics
 - Requires thin membrane
 - No waste products and replenishable
- Thermoelectricity
 - No waste products and replenishable

Chemical Sources

- Rechargeable batteries
 - Recharge once per day
 - No waste products
 - Recharged by capacitive coupling
- Metal-Air batteries
 - High energy
 - Consumable
 - Poison eye fluid
- Glucose batteries
 - Low energy output

Photovoltaics

Radio scavenging

<u>Hydro-voltaic</u>

Thermoelectric

Bio-Mechanical & Bio-Electrochemical to Electrical

Micro Batteries

Possible LPOµS Energy Sources

Physical Sources	Power/Energy density	Issues
 Photovoltaics Solar cells 	(1 mW/cm ² diff sunlight, 100 μW/cm ² indoor) ≈20 J/day avg	Thin and flexible, high-energy Transparent to visible possible
 Wireless RF transfer 	(~5-10% efficiency), few mW, ≈100 J/day avg	Need intrusive external driver
 Bio-mechanical motion Electrostatic generator Magnetic induction 	140 nW/cm2 electrostatic 1 μW/cm² magnetic ≈0.1 J/day avg	Needs attachment to eyelid Low energy
 Eye Tear Hydrovoltaics Requires thin membrane No waste products and replenishable 	8.5 μW/cm² ≈1 J/day avg	Complicated fabrication Low energy
 Thermoelectricity No waste products and replenishable 	50 μW/cm² (ΔT = 10C) ≈4 J/day avg	Thin stacked generator Low energy
Chemical Sources		
 Rechargeable Li batteries Recharge once per day No waste products Recharged by capacitive coupling 	68 J/cm ² (0.5 mm thick), 3V ≈128 J/charge	Needs custom fabrication Toxic materials High capacity
 Metal-Air batteries High energy Consumable Poison eye fluid 	1.3 mW/cm ² , 2V(Pt-Mg) (2 week lifetime) ≈3200 J fixed total energy Consumable Rechargeable may be possible	Consumable Excess Mg waste biocompatibility
 Glucose batteries Low energy output, self recharge 	≈0.34 J/charge 200 μW/cm ² , 0.6V	Self recharge from eye tear Low voltage, Low Energy

Possible LPOµS Energy Sources

Physical Sources	Power/Energy density	Issues
 Photovoltaics Solar cells 	(1 mW/cm ² diff sunlight, 100 μW/cm ² indoor) ≈20 J/day avg	Thin and flexible, high-energy Transparent to visible possible
 Wireless RF transfer 	(~5-10% efficiency), few mW, ≈100 J/day avg	Need intrusive external driver
 Bio-mechanical motion Electrostatic generator Magnetic induction 	140 nW/cm2 electrostatic 1 μW/cm² magnetic ≈0.1 J/day avg	Needs attachment to eyelid Low energy
 Eye Tear Hydrovoltaics Requires thin membrane No waste products and replenishable 	8.5 μW/cm² ≈1 J/day avg	Complicated fabrication Low energy
 Thermoelectricity No waste products and replenishable 	50 μW/cm² (ΔT = 10C) ≈4 J/day avg	Thin stacked generator Low energy
Chemical Sources		
 Rechargeable Li batteries Recharge once per day No waste products Recharged by capacitive coupling 	68 J/cm ² (0.5 mm thick), 3V ≈128 J/charge	Needs custom fabrication Toxic materials High capacity
 Metal-Air batteries High energy Consumable Poison eye fluid 	1.3 mW/cm ² , 2V(Pt-Mg) (2 week lifetime) ≈3200 J fixed total energy Consumable Rechargeable may be possible	Consumable Excess Mg waste biocompatibility
 Glucose batteries Low energy output, self recharge 	≈0.34 J/charge 200 μW/cm ² , 0.6V	Self recharge from eye tear Low voltage, Low Energy

Semi-transparent and flexible silicon solar cell

Semi-transparent and flexible silicon solar cell

Electrostatic Generators: Wetting/de-wetting

Electrostatic Generators: Magnetically coupled

Electrostatic Generators: Experimental Results

Magnetically-coupled harvester

Eye tear activated Metal-air battery (ETMAB)

• ETMAB Battery driven by electrochemical reactions between two metal electrodes and eye tear as the electrolytic solution

Anodic reactions : $M \leftrightarrow M^{n+} + ne^{-}$	(1)
Cathodic reaction – $4e^{-}$ pathway : $O_2 + 2H_2O + 4e^{-} \leftrightarrow 4OH^{-}(E_0 = 0.4V)$	(2)
Cathodic reaction – $2e^-$ pathway(1): O ₂ + H ₂ O + $2e^- \leftrightarrow OH^- + HO_2^- (E_0 = -0.07V)$	(3)
Cathodic reaction – $2e^{-}$ pathway(2): HO ₂ ⁻ + H ₂ O + $2e^{-} \leftrightarrow 3OH^{-}(E_0 = 0.87V)$	(4)

Eye tear activated Mg-air battery

Eye tear activated metal-air battery performance

the UNI

OF UTAH[®]

Eye tear activated Mg-air battery (static vs blinking)

THE UNIVERSI OF UTAH[®]

- Battery life depends on Mg film thickness and load
- Battery energy capacity depends on Mg thickness

Eye tear activated Mg-air battery

Energy/Power Management Ckts

THE UNIVERSIT OF UTAH®

Energy/Power Management Ckt

Power Management Flex Board

Power pack and microsystem integration

Power Pack Performance Metrics

Power Generators	Power Management IC	Delivered Voltage	Delivered Power
Solar Cell (Indoor) + ETMAB	NOT Connected	AC 1.5 V	113 μW
Solar Cell (Outdoor) + ETMAB	NOT Connected	AC 1.5 V	2.7 mW
Solar Cell (Indoor) + ETMAB	Connected (TPS 61094)	DC Stable 3.3 V	109 μW
Solar Cell (Outdoor) + ETMAB	Connected (TPS 61094)	DC Stable 3.3 V	2.6 mW

Summary

- Ocular Microsystems have limitations on energy storage due to small volume
- Functionality limited by energy constraints ~100 J/eye
- Many power generation methods exist but few produce Joules of energy
- Low-Power design and components are essential
- Solar energy is the best source for these eye-based systems

Acknowledgements

- This work has been partially supported by the National Institutes of Health NIBIB 5U0EB023048 cooperative agreement
- National Science Foundation grant CNS-1932602
- Meta grant

National Institute of Biomedical Imaging and Bioengineering

