

EnerHarv 2024 Workshop: *Reflowable Supercapacitors for Energy Harvesting and IoT Applications*

Presented By –

Christian Dietrich

Director of Business Development Nanoramic Labs/FastCap Ultracapacitors christian.dietrich@nanoramic.com

Wednesday, June 26, 2024

HOST A.D. 1308 UNIPG

MEDIA SPONSORS

Key Investors

Niterra

Supported By

arpa·e

AFWER×

HALLIBURTON

MARLIBLIN CORPORATION

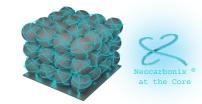
SAFAR WINDSAIL

 \equiv Fortistar \equiv

FastCap Ultracapacitors

Story

Overview


- Founded by MIT graduates in 2009 following a DOE ARPA-E award
- Developed and commercialized the world's first harsh environment supercapacitors in Oil & Gas drilling
- Established rapid commercialization business model, expanded product lines
- Repeated successes in product licenses and business line exits
- Transferred core innovations to Lithium-ion Batteries in 2019
- Spin off FastCap Ultracapacitors in 2024

Technology

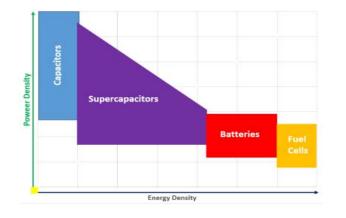
- Neocarbonix[®] at the Core 3D nanocarbon electrode
- · Advanced electrolytes especially designed for harsh environments
- Unique ultracapacitor designs

Business Model & Commercialization

- Capital light, IP licensing business model
- Focus: Rapid commercialization
- Over 140+ granted and pending patents worldwide

Why FastCap Ultracapacitors?

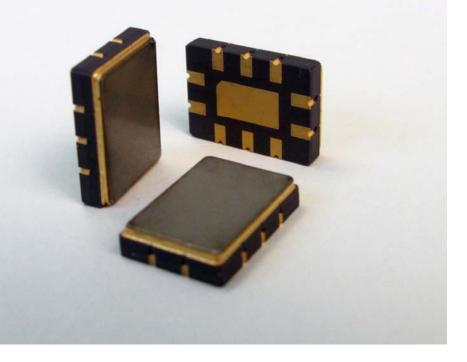
10uW - 10mW /cm²


2024

Energy Harvester Photovoltaic Cell Devices / Sensors 10uW - 10mW /cm² Power Management Radio Module Regulator Input Sensors Charge **Thermoelectric Module** 10uW - 10mW /cm² Improves customer market fit - eliminates need for battery and/or increases battery run time in the field vs battery alone Higher power transmissions due to higher **RF Harvesting** FastCap pulse current 10uW - 10mW /cm² Expand applications with higher Chip Ultracapacitor performance and extended temperatures Vibration Energy Harvesting

3

Why FastCap Ultracapacitors?



- Capture small amounts of energy effectively charge/discharge quickly
- Energy available for weeks
- Easy to incorporate in the manufacturing operation
- Operate from -55 °C to +150 °C
- Reduce size better energy density than tantalum or electrolytic capacitors
- Safer than batteries and tantalum capacitors
- Increases the number of applications/markets for EH

FastCap Ultracapacitors

2024

REFLOWABLE SMD ULTRACAPACITOR

PROBLEM:

Ultracapacitors are needed as energy storage in high volume electronics

UNTIL NOW:

No practical ultracapacitor could survive the high-volume electronics manufacturing process

SOLUTION:

Nanoramic's Nanocomposite Electrode and advanced electrolytes enable the SMD Chip Ultracapacitor

APPLICATIONS:

- IoT and Smart Meter Devices
- Solid-State Drive (SSD)
- Non-volatile (NV) Memory
- Mobile devices

Key Innovations

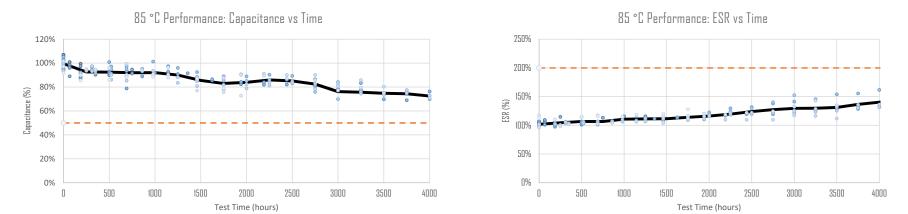
Enabling components and processes are all required for the success of the Chip Ultracapacitor

2024

PVDF-free Composite Electrode High power and high temperature. No melting of binder during reflow. Long lifetime.

Ceramic package Inert and compatible with our electrolyte, hermetically sealed, leadless and low profile. World's First Reflowable EDLC with no compromises

FastCap Solution: Reflowable Ultracapacitor

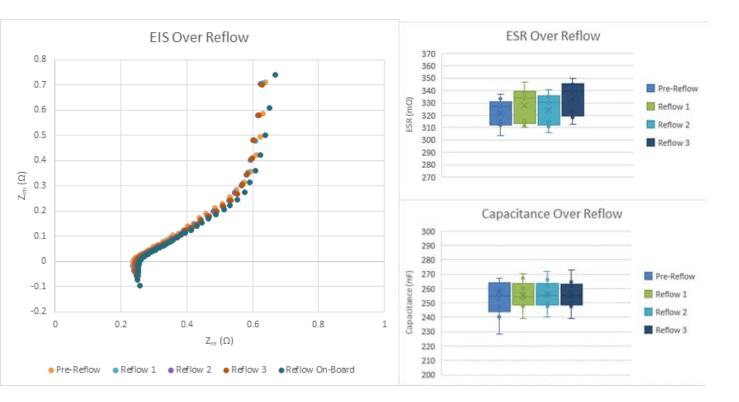

- Wide Temperature Range -40 °C to +85 °C
- Reflowable
- 🔯 Low ESR
- Long lifetime
- 🔯 Surface mount design
- Pick-and-place compatible
- RoHS compliant
- Pb-free reflow compliant
- Greater flexibility for energy harvesting designs

World's First low ESR Reflowable Ultracapacitor

Long Lifetime SERVICE LIFE 85 °C, 2.1V

More than 4000 hours at 85 °C, 2.1V

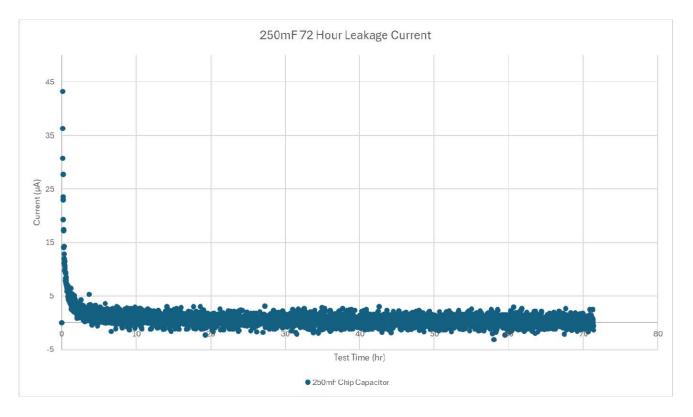
-


2024

- Capacitance reduction less than 30% after 4000 hours
- ESR degradation less than 40% after 4000 hours

Chip Ultracap Reflow Performance

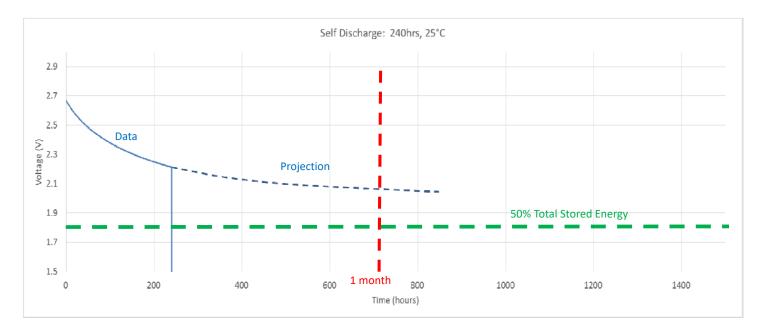
2024


- Stable impedance over a wide frequency range
- Reflowable at 260°
 Pb-Free reflow compliant
- No change in electrical performance after 4 reflow cycles

Chip Ultracap Leakage Current

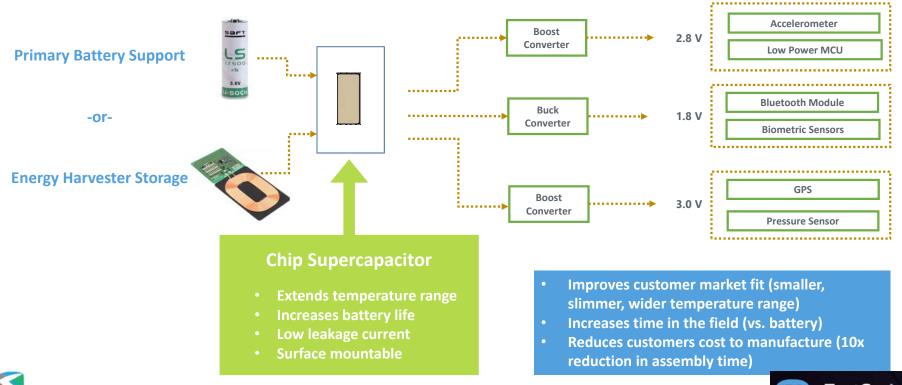
A

2024



Ultra Low Leakage Prototype

2024


ULTRACAP RETAINS MORE THAN 50% CAPACITANCE AFTER 30 DAYS

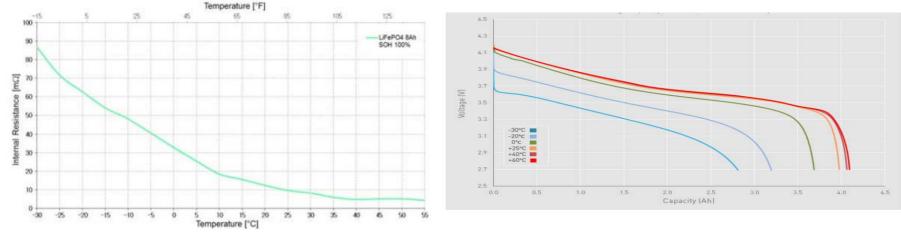
TYPICAL APPLICATION IN IOT INDUSTRIAL SENSORS

Industrial Sensor Comparison

 \mathbf{V}

Industrial Sensor Application Needs	Chip Ultracapacitor	Alternative Ultracapacitor		
Industrial and Condition monitoring sensors • High vibration → 40 g peak • Intense temperature cycling • High pressure encapsulation process	Compact, ruggedized construction Reflowable, Capable of withstanding high levels of shock/vibration, temp cycling, high pressure encapsulation	Not rated for harsh environments X • Short lifetime, swelling/leaks • Not reflowable		
 -55°C to + 150°C operating temperature Must deliver peak currents at low temps 	Wide operating temperature range	X Narrow operating temp range		
5 – 10 year device lifetime	 High stability over DC life Better cycle life at even at elevated temperatures (Neocarbonix PVDF-free electrode) 	X Faster degradation at elevated temperatures		

FastCap® Chip Ultracapacitor can improve customer reliability and functionality



Poor Battery Performance at Low Temp

Battery Resistance with Temperature

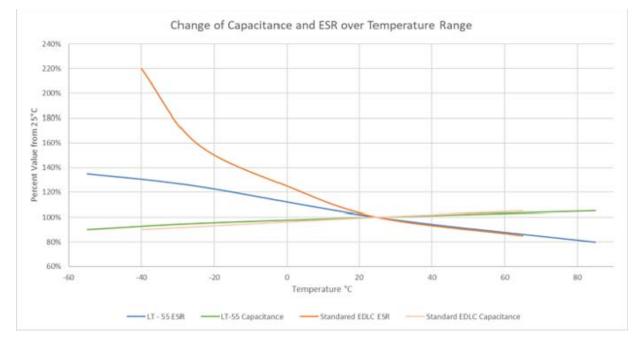
Battery Capacity with Temperatures

Lithium ion FePO4 8 Ah battery

2024

More than 8x increase at -30/C

Lithium ion NMC 4.0 Ah battery


More than 30% capacity loss at -30C

FastCap Low Temp Performance

2024

Nanoramic LT55-35 AA Ultracapacitor Comparison

Capacitance reduction of less than 20% at -55C

ESR increase of less than 40% at -55C

Low Temperature Ultracapacitor Technology

- Allow sensors & transmitters to work at -55 °C and below
- Tested and verified by a major aerospace company
- Extreme durability Meets MIL202G in the AA size
- Enables use of EH in winter/artic conditions, high altitude, cold chain

FastCap High Temperature Technology

- Allow sensors & transmitters to work at +150 °C and above
- Rechargeable prototypes up to +300 °C
- Extremely safe no explosion or fire hazard
- Ruggedized for high shock and vibration
- Product in use by Halliburton for downhole drilling
- Enables use of EH in extreme summer conditions, high temp industrial applications

Product Offerings

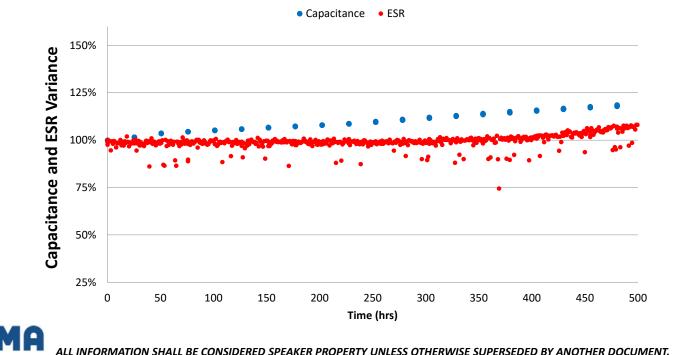
Product Code	Capacitance (F)	Voltage (V)	ESR (mΩ)	Max Temp (°C)	Format
EE100-350	370	2	8	100	D Cell
EE125-350	350	1.5	8	125	D Cell
EE150-350	345	1.0	8	150	D Cell
EE100-35	38	2	18	100	AA Cell
EE125-35	35	1.5	20	125	AA Cell
EE150-35	33	1	22	150	AA Cell

D Cell

Endurance of Nanoramic Ultracapacitors

- Lifetime at rated voltage and temperature of 1500 hours
- Cycle life at 25°C > 1,000,000 cycles
- Lifetime at 25 °C > 15,000 hours
- Shock and vibration 500Gpeak & 20Grms

PROPERTY UNLESS OTHERWISE SUPERSEDED BY ANOTHER DOCUMENT.


AA Cell

FastCap High Temp Performance

Sandia National Lab Validation:

2024

250 °C Ultracapacitor Performance Minimal Degradation after 500 hours at 250 °C

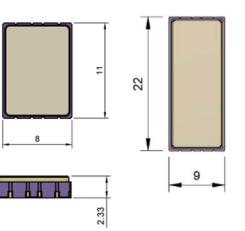
Conclusions

- EH applications can enjoy extended battery life, or in some cases replace batteries in IoT applications, by using Ultracaps
- Small, mass manufacturable, energy harvesting devices can be improved with chip ultracapacitors
- Surface mount design and reflow soldering allow unlock design flexibility
- EH temperature ranges can be expanded dramatically with operations down to -55 °C and up to +150 °C
- Market Series (Series and Series and Series

Q & A

Thanks very much for your time and attention!

Questions/comments???


Appendix

Nanoramic Chip Capacitor Specifications

Model	Parameter	Description	Min	Тур	Max	Units
SD85-500	Rated Capacitance	25°C	200	210		mF
	Operating Voltage			2.1		٧
	Surge Voltage			2.5		٧
	ESR	25°C		280	300	mΩ
	Leakage Current 🛽 rated voltage	96hrs. @70°C		<5		µА
	Operating Temperature		-40		85	၂၀
	Storage Temperature		-45		135	പ

[YOUF

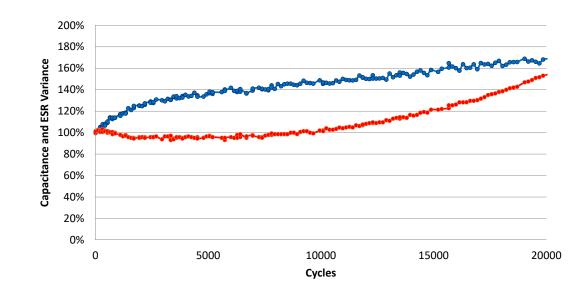
LOGO

Dimensions are in mm

23

High Temperature Battery Technology

- Non rechargeable batteries can work up to +180C
- **Rechargeable batteries can work up to +125C**
- These high temperatures degrade battery performance
- Batteries usually require extra safety measures
- Rechargeable cycle life limited at high temps

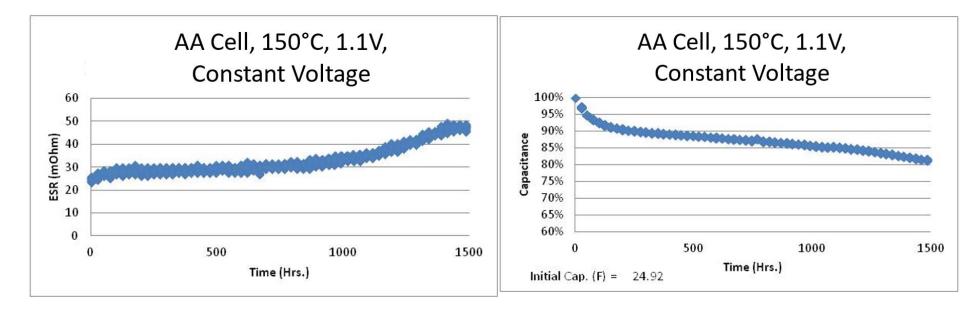


FastCap High Temp Performance

In-House Prototype: Extended Test 300°C Ultracapacitor Performance Minimal degradation after 20,000 charge discharge cycles

2024

--------------------------------ESR



FastCap High Temperature Technology

2024

ESR Increase and Capacitance Decrease over 1500 hours at 150 C

