

# EPoSS Working Group Green ECS

Speaker: Daniela lacopino

2

© EPoSS 2023

Content

- European Association on Smart Systems Integration (EPoSS) & Green Electronic Components and Systems (ECS) WG
- White paper
  - Global environmental context for Green ECS
  - Improving the current situation
  - Green ECS by design
  - Extending product lifetime
  - Summary & recommendations
- Authors



## **Smart Systems**

- Assembly of technologies that build products from components
- provide safe and reliable operation under all relevant circumstances; and
- are as small as possible, networked and energy-autonomous.
- Need for a new ECOSYSTEM: education, research and development, product design, manufacture, business models and markets



## **European Context**



## Working Groups and Task Forces I

| ey Technologies |
|-----------------|
|-----------------|

- Materials and processes
- Design methodologies and simulation
- Reliability, safety and security
- Advanced packaging
- MEMS/ MOEMS
- Integrated photonics
- Actuators
- Quantum technologies

## **Green ECS**

- Global environmental context
- Today: from cradle to gate
- Green ECS by design. Future: from cradle to cradle
- Extending product lifetime

## AI at the Edge

- Neuromorphic Computing
- Meta-learning
- TinyML
- Hybrid modeling
- Federated Learning
- Open source Hardware and Software
- Energy and costefficient AI training at the Edge
- Security, privacy, trustworthy and explainability

#### **Transportation**

- Clean, efficient and electrified propulsion
- Advanced Driver Assistance Systems (ADAS)
- Connected and automated driving
- Smart mobility services
- ECS for hydrogen and battery control
- Data science, AI and big data

## Working Groups and Task Forces II

#### **Healthy Living**

- Smart systems for disease prevention and healthy lifestyles
- Personal medical devices
- Point of Care diagnostics
- Remote monitoring for chronic patients
- Improving the autonomy and integration of disabled and ageing people

#### **Factory Automation**

- Human-robot cooperation
- Autonomous selfdeterming robot systems
- Internet of Things
- Power management
- Machine-to-machine communication
- Architecture and modelling

#### Energy

- Smart grid components
- Decentralised energy systems
- Energy efficiency
- Infrastructure
   monitoring
- Predictive energy management
- Power electronic actuators
- Inverter technology
- DC grids technology
- Energy for mobility

#### Food, Agricultures and Natural Resources

- Sustainable
   management
- Sustainable food production and consumption
- Environmental monitoring and remediation
- Animal and plant health



2023

# **EPoSS: Green ECS Working Group**

- Members: RTOs, SMEs, industries
- Join forces in sustainability & environmental impact topics
- Propose EU & KDT proposals for sustainability calls
- Propose focus topics for KDT
- Give inputs to Strategic Research and Innovation agenda (SRIA) for ECS
- Write white papers



## EPoSS White Paper on Green ECS ECS Sustainability and Environmental Footprint

- Published July 2023
- Open for consultation until 25 August 2023
- Finalised in September 2023

ECS Sustainability and Environmental Footprint

White Paper authored by a joint EPoSS working group. July 2023

Erika Györvary, Philippe Dallemagne, Jan-Willem Schüttauf, Sven Rzepka, Nils Nissen, Daniela Collin, Aidan Quinn, Paavo Niskala, Tomi Salo, Liisa Hakola, Dag Andersson, Jonas Gustafsson, Jutta Hildenbrand, Dagmawi Belaineh Yilma, Jon Summers, Sabine Lengger, Chiara Sandionigi, Benedicte Robin, Isabelle Servin, Michael Offenberg, Moritz Schlagmann, Kai Kriegel, Albrecht Donat, Nicolas Gouze, Hannah Funk, Matthias Straub, Patrick Blouet, Valentin Landmann www.smart-systems-integration.org

Comments to <u>contact@smart-systems-</u> integration.org



# **EPoSS partners contributing to Green ECS**





## From the Agenda 2030 to Green ECS



## Sustainability Agenda 2030: Towards Green ECS





Design for R concept applied to ECS circular economy (B. Robin, CEA)



EPoSS

2023



Today's cradle to gate is not yet circular.



It is obvious through our global waste issue from electrical and electronic equipment (WEEE or also called E-waste).



# How can Green ECS support a cradle to cradle approach?



# **Recommendations**

### Design:

- Identify, reduce or replace all harzardous materials (e.g. PFAS).
- Reduce and replace rare, valuable and critical materials, e.g. with renewable or bio-based ones.
- Promote eco-reliability for an extended lifetime, smaller environmental footprint and higher material efficiency.
- Perform more LCA and PEF, relevant life cycle and environmental footprint assessments to gain more certified up-todate data for PCR and EPD.
- Increase modularity and separability without sacrificing performance.
- Motivate and generously reward any kind of radical green innovations and new environmentally friendly focused technologies.
- EU ecodesign legislation must establish clear benchmark values for i.e. 9Rs. Specific effort is needed for electronic components that are only indirectly addressed through product group measures.

### Manufacturing Processes:

- Use renewable and bio-based materials through additive methods.
- Use robotics to increase efficiency and to create new value streams to speed up the capabilities of industry to comply with e-waste recyclability.



## Tools and Infrastructure for Circularity:

- Prioritise the 9R framework to speed up the capabilities of industry to comply with eco-design regulations.
- Increase data and data transparency of complete supply and value chains, e.g. through digital product passports.
- Increase the security of AI and software to ensure a sustainable digital ecosystem of ECS.
- Reduce short lifetime devices.
- Establish a collaboration platform for eco-designers, manufacturers & recyclers, which is urgently needed to coordinate and speed up the greening of ECS.
- Further promote awareness and education on sustainability for all stakeholders.

## **Business Models:**

- Increase repair rates, e.g. through bonus-malus systems because cost of repair is still an inhibitor.
- Establish a repair index inspired by the French repairability index.

The challenges for R&D and regulation for green ECS and a successful reduction of e-waste identified by the EPoSS expert group



EPoSS 2023

# **Counter check the ECS-SRIA roadmap 2023**



## Additional actions for sustainable ECS and e-waste reduction to the ECS-SRIA Roadmap 2023

|                                                                                                                                              | 2023                                                                                                                                                                                                                                                                                                                                   | 2027                                                                                                                                                                                                                                                                       | 2032                                                                                                                                                                                                                                                                                                                                                                                                                            | long term |
|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 1.1 Process Technology, Equ                                                                                                                  | ipment, Materials & Manufacturing                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| Major Challenge 2<br>Novel devices and circuits that enable<br>advanced functionality with novel<br>sustainable processes (additive methods) | 2.5: Flexible and structural substrates electronics                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |
|                                                                                                                                              | Bio-based feedstocks                                                                                                                                                                                                                                                                                                                   | <ul> <li>Novel chemistry-based release concepts for better<br/>recyclability</li> <li>Highly recycled content of bio-degradable materials</li> </ul>                                                                                                                       | <ul> <li>Reliable devices based on low environmental impact materials,<br/>incl. easy recyclability</li> <li>Zero waste added manufacturing to produce functional modules<br/>(mix of printed substrate, printed components, and conventional<br/>components integrated in build-up processes)</li> </ul>                                                                                                                       |           |
| Major Challenge 3<br>Advanced heterogeneous<br>Integration & packaging                                                                       | 3.4 Enhance reliability, robustness and sustainable to                                                                                                                                                                                                                                                                                 | echnologies                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |
|                                                                                                                                              | Less material for higher functionality     Material and energy saving through heterogeneous integration     (high performance and high flexibility packaging)     Enhance testing of separate components, before assembly via     concepts such as KGD, BIST and self-repair                                                           | <ul> <li>Recycled content and novel materials in high-<br/>end and low-end applications, i.e. including<br/>solutions for one-time-use products</li> </ul>                                                                                                                 | <ul> <li>Highly integrated re-usable circuit blocks,<br/>such as «universal computer modules»</li> </ul>                                                                                                                                                                                                                                                                                                                        |           |
| Major Challenge 4<br>World-leading and sustainable<br>semiconductor manufacturing equipment<br>and technologies                              | 4.5 Sustainable semiconductor manufacturing                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
|                                                                                                                                              | Solvents with low env. impact     Water-soluble bio-sourced process chemicals     PFAS-free product alternatives                                                                                                                                                                                                                       | <ul> <li>Energy-efficient ventilation</li> <li>Process steps with low env. impact</li> <li>Safe and sustainable by design chemicals and materials</li> <li>Critical raw materials reduction</li> <li>Solute management and specifies</li> </ul>                            | <ul> <li>Energy-efficient tooling</li> <li>Safe and sustainable by design chemicals and materials</li> <li>Limit use of scarce semiconductor elements to functional layers<br/>(not bulk wafers)</li> </ul>                                                                                                                                                                                                                     |           |
| Maiar Challenge 1                                                                                                                            | ystem integration                                                                                                                                                                                                                                                                                                                      | Solvent management and recycling                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| Major Challenge 1<br>Enabling new functionalities in<br>components with More-than-Moore<br>technologies                                      | 1.6: Energy and thermal management                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                 | ()        |
|                                                                                                                                              | Lightweight energy harvesters and storage                                                                                                                                                                                                                                                                                              | <ul> <li>Advanced encapsulation materials for energy harvesters</li> <li>Extend chipiet concept (design and manufacturing) to<br/>non-IC components</li> <li>Sensors and actuators for the optimisation of battery cells<br/>usage during their entire lifetime</li> </ul> | 1                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
|                                                                                                                                              | 3.1 Sustainable integration and use of ECS                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |
|                                                                                                                                              | <ul> <li>Less material for higher functionality</li> <li>Availability and exchangeability of spare parts and tools</li> <li>Certified up-to-date data for LCA, PEF, PCR and EDP</li> <li>Eco-design benchmark values for electronic components</li> <li>Establish a repair index inspired by the French repairability index</li> </ul> | <ul> <li>Cross-company reuse of "stable" chip designs, including<br/>More-than-Moore components (above)</li> <li>Repair as business (bonus-malus-systems)</li> <li>A business model can emerge for third-party repair centres</li> </ul>                                   | <ul> <li>Environmental footprint and criticality based recycling<br/>planning (final stage material recycling)</li> <li>Set up repair process:         <ul> <li>Failure characterisation, repair and re-characterisation</li> <li>Provide manuals, instructions, schematics, and<br/>inexpensive spare parts</li> <li>Train skilled repairers</li> <li>Questions around re-certification, warranties and</li> </ul> </li> </ul> |           |
|                                                                                                                                              | 3.2: Recyclability of components, modules and syste                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |
| 2.4 Quality, reliability, safety and cybersecurity                                                                                           |                                                                                                                                                                                                                                                                                                                                        | <ul> <li>Closing data gaps incircularity and recycling through<br/>Digital Product Passport</li> </ul>                                                                                                                                                                     | safety-relevance need to be addressed                                                                                                                                                                                                                                                                                                                                                                                           |           |
| Major Challenge 1                                                                                                                            | 1.2: Reliability: tests and modelling                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |

 Overhaul of conventional testing in development and qualification tests (in combination with virtual qualification)

# **Tyndall Contribution**

Power consumption for IoT edge devices during operation, communication, standby and sleep modes. "sweet spot" for energy harvesting (100 nW - 0.5 mW)



© EPoSS 2023

# **Authors**

- Erika Györvary, CSEM
- Philippe Dallemagne, CSEM
- Jan-Willem Schüttauf, CSEM
- Sven Rzepka, FhG-ENAS
- Nils Nissen, FhG-IZM
- Daniela Collin, FhG-ISC
- Aidan Quinn, Tyndall
- Paavo Niskala, TactoTek
- Tomi Salo, VTT
- Liisa Hakola, VTT

- Dag Andersson, RISE
- Jonas Gustafsson, RISE
- Jutta Hildenbrand, RISE
- Dagmawi Belaineh Yilma,
   RISE
- Jon Summers, RISE
- Sabine Lengger, SAL
- Chiara Sandionigi, CEA
- Benedicte Robin, CEA
- Isabelle Servin, CEA

- Michael Offenberg, Bosch
  - Moritz Schlagmann, Infineon
  - Kai Kriegel, Siemens

- Albrecht Donat, Siemens
- Nicolas Gouze, VDI/VDE
- Hannah Funk, VDI/VDE
- Matthias Straub, Microtec-Südwest
- Patrick Blouet, ST
- Valentin Landmann, ST



# Thank you for your kind attention.



in

Erika Györvary, CSEM erika.gyoervary@csem.ch