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The Vision: Micro Energy Harvesting

... for Energy-Autonomous Wireless Sensor Nodes (WSNs) O

" ,always on” wireless
no battery recharging or exchange sensor input data link

" no power cords '

easy to install ... micro-
= .. in numerous applications sensor

wireless
transmitter

t t

energy management

| !

energy storage
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5 other bugs,...
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Thermoelectric generators (TEGS)

heat sink: Temperature T, Seebeck voltage AU

AU = n-a-AT

insiating n: number of thermocouples

a: Seebeck — coefficient of thermocouples
AT : temperature difference at the TEG

t electrlcal power

electric output power

heat source: Temperature T,

i 1
. 2 2 | R e |2
Properties p o ol R s (U
el I
= no moving parts (Rg,eﬁf +R, )2 i l(:> B mlUL
= DC-like currents, however... A I R

= voltage polarity changes with the direction of the temperature field
= very low to fair output voltages (10 mV ... V) &
€.
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TEGs: influence of thermal resistances

heat sink: Temperature T,

heat resistance K. real temperature difference at the TEG
at the cold side
K
Hete Al = — (Tz — Tl) = d-AT
heat resistance — !{H + Ko + K c

K;ec of the TEG

d: thermal\;’eed factor

heat resistance K|,

at the hot side QISENICE, POWRT realistic electric output power

heat source: Temperature T,

2 i
Krro 20 Y R,
Resumee Fa = [K K +K (n-a) AT ( ;
\ M TEG TRy + R, ’ T Rg,eﬂ +RL
= Thermal heat resistances - and the heat flux - ,/"a‘,’zx
play a crucial role for the electric output power. Sl ‘

= The electric output power scales with AT?.

4
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Small AT applications

Boundary conditions
= small AT: one to a few Kelvin
= small heat flux
= highly dynamic fluctuations of both can happen

Infrastructure monitoring

human, biomedical, ...

home automation ﬁ"
IMTEK®
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Small AT: example infrastructure monitoring in tunnels

What for ?

= traffic monitoring

=~ %
= environmental monitoring N\
= detection of accidents, 'fu}ﬁﬁb)))j J j
explosions, earthquakes,... N
= structural health monitoring

.

Available energies in a tunnel ?

thermal x xv
sound xv xv
vibration v X
airflow v v
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Geothermal energy harvesting in tunnels?

Concept

» thermal probe embedded in the tunnel wall

= thermoelectric energy harvesting between the
(cold ?) tunnel bed and the (warmer ?) wall surface

But first: measurement of the available AT
= temperature profile in the wall
= surface and air temperature
= wind speed

A
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generator

| antenna  buffer storage

cold §ite
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electronics and wireless

housing ~

tunnel wall —

geothermal probe with integrated
thermoelectric generator (conceptual drawing)
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Temperature budgets in a road tunnel: measurements

LS _ , P
< 0 ’ i - AT«';lir-w.';lll I )
_0'50 5 IIO 1I5 2I0 2I5 3.0 3l5 4.0 4I5 SIO 5.5 0
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= predictible temperature profile in the wall y
= highy dynamic air temperature Hugenwald tunnel,

= influence of weather and traffic density Freiburg, Gemany

= small temperature gradients (1...2 K) between tunnel wall and air ﬁ"
IMTEK®
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TEG at a wall-air interface with static and low AT

thermal TEG and AT electrical

Sink . K > . L
-———- _ TEG ¢ AT L e N 2
—_ I_ _ m })el = LK % % J \-\(Jq-a)/-,AT . ( )2‘\'J7DC—DC/‘_ E-AT
e Ty tRe ) Tt Rg’eﬁr +R, ) e
. o
U

PrT"T.

~
——————

DC-DC-converter efficiency,
as only small output voltages

. . . . - are expected
Design considerations under static conditions P

= make the thermal resistances small ®» larger d through a large heat sink with a small K.
= use highly efficient TEGs ®» |arger Seebeck coefficient n-a
= use a highly efficient DC-DC converter ™ high power conversion efficiency 1y, low start voltage

€.
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TEG at a wall-air interface with dynamic and low AT

thermal time constant t simplified transfer function (for
haat w ‘-I-_alr of the heat sink: optimal thermal wall coupling)
sink 7 _ ,
11111 S, PR A |

____l__ K ATVTEG — Twall_Tair.
TEC ) l HS HS l+s-7
i ] ;':
wall T U

w Py P, = P(0) = EAT(0)]

TEG \ |
wall
temporal behaviour of AT? defines the output power

Design considerations under dynamic conditions
* The heatsink’s heat storage capacity C,,; dampens out fast - and desired - fluctuations of T,

* Therefore: reduce the heatsink’s thermal time constant T and not primarily K,
-
€.
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Energy harvesting from dynamic low AT in a tunnel

0.06F
> 0.04f

air-wall
-0.02

AT/ K

05 : i i i i : i i i i i
0 5 10 15 20 25 30 35 40 45 50 55 0O
t / min t / min
v N

N7 = Ky G
T = Bpyg-Cpyg

heat T..

Sink TEG K [K/W] =t [s:]____E__[J[gay]
S !II‘"L_O 1 83 (239 174
TEG l 2 8.5 374132
o o 3 2.8 402 0.87
wall T... U=20..60mv , 49 416 0.68

o
A. Moser et al., Proc. PowerMEMS 2010, Leuven, Belgium, 431-434. &,MTEK,

A
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Energy harvesting from dynamic low AT in a tunnel

—— AT (meas) 7ATQ (meas) ATg (model)
X
f=
=
—— Capacitor e Data transmission
1 1
3L : e AR Lol
Z oL EdayI: 0'0? J ] LT TR AL
i B L N
Results %0 3 R 2 15 18 o 0
= harvesting of 0.07 J/day, Kb
from AT >1.2 K at the TEG over appr. 20 hrs A. Moser et al., Journal of Electronic
= 415 energy-autonomous radio telegrams per day Materials 41 (6), 2012, 1653-1661.
(200 pJ per telegram, average interval: 3.5 min)
= wireless system and DC-DC converter: Enocean ﬁ.’
IMTEK®
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Small AT: example pet tracking and wildlife tracking

Today \

= battery-operated wireless and GPS module in/at the collar
= wearable wireless receiver or ...
= satellite link or ...

= GSM link into your mobile phone

Disadvantages
= [imited battery lifetime
= imited space and weight allowed
= expensive collar exchange for wild animals

=» a promising application for
energy-autonomous systems

€.
IMIEK®

ALL INFORMATION SHALL BE CONSIDERED SPEAKER PROPERTY UNLESS OTHERWISE SUPERSEDED BY ANOTHER DOCUMENT.

EnerHarv Ps M n
2024



Temperature budget at wildlife: measurements

cold night: T,,,< T, direct sun: T,,> T,
70 | — 40
60 /T A
. 50 / \ weather data | |- 30
gi 40 Il . X deltaT 25
\ / A A
— 2 30 ;W " ey 20
collar with two temperature ® 20 Y = _ L L AA L by 15
data loggers ... Q oA LA ] 10
qE, |
... at a freely grazing -
German sheep
(,Heidschnucke®)
= only small temperature gradients available (2...4K) time [hrs]
= voltage polarity changes with the direction of the temperature field P. Woias et al., |OP
= very low output voltages for small temperature gradients (10s of mV) Conference Series

557, 2014, 012084
®» high heat flux required = thermal heat connector (THC) as ,fur penetrator”

= voltage boost required = low-voltage DC-DC converter ﬁo’
s MTEK®
e [DSMA
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Thermal heat connectors (THCs) for fur

Design concept and results

T..«(variable)

= fin-type fur penetrator, bypassing “most of the fur” X
* rounded fin tips (no harm to animal) --G;U
= fur-adapted fin length and fin spacing o g
= significant reduction of front area: 684 mm?> ® 200 mm? ° |
= significant reduction of thermal resistance: 55 K/W % 40 K/W L3
= significant reduction of weight: 17.6g® 12¢g
| @® frontarea @ thermal resistance | —
800, ", o 80 S
— 700’ ® \\ 70 I;'
E 600 _ | 60 2 '
E 500 T | ¢ S S 50 o &
8 400 e 40 @
S 300 . o & 30 =
S 200 et o 20 g
= 100 | o 10 8 Reference 5 mm 4mm 3mm 1.8 mm
0 ! L 0o *
0/ 1 2 3 4/ 5 8 . : =
~  diamet [~' : E. Baumker et al., Energies 13, ﬁo
In dilameter |mm
P 2769, 2020 IMTEK® =
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Low-voltage step-up converters

Generation 1 (2012)

Generation 3 (2019)

40 80
P. Woias et al., IOP
< 30 Conference Series — 60
= 476, 2013, 012081 O ot o S o B o R B i A SR
2 20 {——10. S 40
2@ . 3 : : : ' ' ' '
£ . 2 U_in=-20mV
S S omv | . ® 20 T —e-Ulin=+20mV [
iV S T N 0 S P. Woias, Patent L | ST
o=y ¢ |} i [ ] DE102011122197B4, 2011 | JJ SR S N
0 20 40 60 80 100 120 140 0 100 200 300 400 500 600 700
output current [pA] load resistance [kOhm]
= start-up voltage: 10 mV = start-up voltage: +/- 20 mV
= power-down voltage: 6 mV = power-down voltage: appr. +/-8 mV
= best efficiency: >35%at 10 mV = best efficiency: 55..70 %
= step-up ratio: 60 ...140 = voltage step-up ratio: 150... 250
" no influence of input voltage " no significant efficiency loss with input voltage

onto power conversion efficiency

A
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Thermally powered wildlife tracker: system design

TEG+THC goldcap
10--100'mV 0..5.5V start-stop sensors for
*—¢ , GPS
switch Tandg

step-up — T T T
<> converter I 1

AI step-down | 2.2V [ microcontroller
.—

converter 'ADC ' ERAM !
1 1

TEG with THC and integrated i i
temperature sensors

collar with buckle

electronic module

EnerHarv Ps M n
2024

€.
IMIEK®

ALL INFORMATION SHALL BE CONSIDERED SPEAKER PROPERTY UNLESS OTHERWISE SUPERSEDED BY ANOTHER DOCUMENT.



Thermally powered wildlife tracker: system test

Promising results from a dog (2019) ... ... and from a field test with sheep (2020)
= AT at the TEGs: 5K@ 19 °C ambient = agverage AT at the TEGs: 2...3 K
= goldcap charging power: 360 yW @ 4.5V = peak AT value at night: 4.5K
= appr. 1 GPS-fix within less than 30 minutes " night: more than 400 pW (P, =800 uW)
= not annoying or harming for the animal ! = day: below 100 pW

E. Baumker et al., Energies 14 (19), 6363, 2021
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Medium AT applications

Boundary conditions
= acceptable AT: at least 10s of Kelvin
= reasonable heat flux
= moderate dynamics of both

Process control

|

Automotive © Citroen

€.
IMIEK®
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Medium AT: example process automation

Energy-autonomous wireless temperature sensor

= thermal energy harvesting
from a , large enough” AT
(AT > 30 K)

= non-rechargeable battery
for auxiliary power supply

= \WirelessHART interface
400pPA@3V=12mW

= in the product portfolio
of ABB since appr. 2012

wireless
temperature
sensor

heat sink
temperature T,

duct
temperature T,

all pictures: © ABB ’
€.
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Medium AT: example automotive

What for ?

= tire pressure monitoring

= engine monitoring and control (oil and water cycle, knocking...)
= tire rotation sensors

= comfort function ...

Available energies at/in a car or truck ?
= Jight
" movement
= acceleration
= heat and cold
= sound
= vibration
= gas and liquid flow

€.
IMIEK®
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Thermal budgets in/around a car engine ?

TEG module at

the motor block  motor block
(at cooling outlet) .

heatsink Pt 1000 temperature sensor
(hot side temperature) motor cabinet:

air temperature

radiator: iy
water inlet =
ambient air “nb\_
15 mm . R
fan: air inlet
a small TEG: thermal
na=4 mV/K connector to : _ .
radiator: manifold
R, = 0,21 Ohm motor block air outlet

€.
IMIEK®
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Thermoelectric EH in cars: Exemplary test results

5 80 140
45 TEG calculated| - —U_oc

_ 60 A 120 g
S 4 Y output power |- s ——delta_T 7
E E 40 +—— 100 %
E 3,5 8 o
2 3 2 20 ~—— 80 ‘g
g 5 / g
s 25 = 0 60 €
s 4 o
CHRE £ 20 20 5
o S - o
g 1,5 'S /"M‘»\ g
R e 40 / - 20 3
£ 05 \ §_ 60 0 g‘
0 ' T T T T i -80 ; ; T T T -20
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Time [min] Time [min]
T >
Resumee S 3
-
. o
= high output power (up to a few mWw) I s
c
* |ow output voltages (a few 10 mV) = §
. . © ¢ <
= obvious influence of car speed T § >
. .ere . . T Q B
= significant energy harvesting after the end of a journey > £ S
= ]
O ® O

4
‘j &IMTEK:
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Thermoelectric EH in cars: Coldstart conditions ?

30 1,5

. < Strtuptive !

20

15 P max

12 mV- -

10

Maximal output power [MW]

Open-circiuit-voltage UOC [mV]

/ 0,5
_/_//:—/ ———————— - 0.3 mW
Resumee (for a small commercial TEG) 0 2 2'T2_ | _2]'3 2
= 100 uWs of output power available after a few minutes
a small TEG = sufficient for low-power wireless sensors only
= efficient low-voltage DC-DC converter required
“starting from as low AT as possible and as soon as possible”
= higher output power required for realistic application scenarios (e.g. through larger TEGs...)

€.
IMIEK®
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High-temperature and AT applications

Boundary conditions
= high temperatures: 100s of Kelvin
= high AT: 100 to 100s of Kelvin
= reasonable to high heat flux
= [ow dynamics of both (usually huge thermal masses involved)

Highly energetic
combustion processes

High-power geothermy

€.
IMIEK®
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High-temperature applications: a gadget example ?

Properties, to be learned from
= cold temperature at the TEG enhanced via active convective cooling
= with that: active cooling of the TEG, to prevent its destruction
= with that: an average electric power of 3 W
" integrated and also air-cooled battery (2.600 mAh)

BioLite 2° thermoelectric

) Fan
energy harvesting stove = F‘)
150 € (2024) ( "l_b A T e
gaigl)ite G ., USEport

I e —h

Bx 1 @ Air . Hegt Eleciricity

\ G
W IMTEK®

ALL INFORMATION SHALL BE CONSIDERED SPEAKER PROPERTY UNLESS OTHERWISE SUPERSEDED BY ANOTHER DOCUMENT.

EnerHarv Ps M n
2024



High-temperature applications: What TEGs are needed?

Resumee
= T atthe hot side is high ® high-temperature thermoelectric materials required
®» a,bad” thermoelectric material may be ,,good enough”
®» reduced requirements on system design (step-up converter)

Z\ ... but also: at least T, is high

Choice of termoelectric materials
= high-temperature semiconducting thermoelectrica: PbTe, SiGe, Mg$i,...
= Why not metals ?

€.
IMIEK®
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High-temperature thermoelectric materials

Why metal TEGs ? A

1.0 |=

Bi;Te; SiGe

= very small Seebeck coefficient

» high operational temperature v/ 08 |-

= very robust systems v S osh ‘§
* raw materials readily available v/ sl T
0.2 |- ._qc.j E
CryI0 ] IE | SIDlace |
200 400 600 800 1000 1200 >
Temperature in K
Copper 6.5 uV/K 1085 °C
Constantan (CugNi,;) -35 pV/K 1280 °C
Bi,Te; ~ 200 uVv/K 573 °C
PbTe ~-100 pV/K 905 °C &’
IMTEK®
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Copper-Constantan TEG: Theoretical case study

Device specification Con_tatct -
= temperature difference at the TEG: 100K o T\ ISREIEEER S
all dimensions 11
" min. output power: ~100 mW in mm ¢\ 0.028
= thermal heat flux: ~100 Watt M
< \ copper
p
constantan
Number of thermocouples 241 _
Seebeck coefficient (generator) 10 mV/K E o0 \‘
no load output voltage 1.0V % 150 \\
loaded output voltage 0.5V g 100 N —
max. output power 3 50
too optimistic: R. = 0 mOhm 236 mW E 0
realistic: R. = 1 mOhm 192 mW 0 1000 2000 3000 4000 5000

contact resistance [nOhm]

€.
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Summary and conclusions

Thermoelectric energy harvesting is feasible in a number of conceivable application
scenarios, ranging from low to high temperature differences and temperatures.

In any case, a thorough system design is required, by tailoring ....

= the TEG itself, and its thermal interfaces,

= all power management electronics,

* the connected wireless sensor node.

Primary requirements and needs for further R&D are ...

" a realistic determination of energy densities available for harvesting,
" improved power management electronics,

= power-optimized wireless data transmission,

= a solution for the “low-AT-start-up”.

€.
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Thank you very much for your attention

... and if you are interested in more on energy harvesting:

)

[ SCtuator - -
@ Empa

"I Enar... s T — ‘ Materials Science and Technology

Energy Harvesting

This course provides an overview on the wide field of energy harvesting and a selected in-deep knowledge on various areas as the design of
microgenerators and power management. It gives some insight into energy-autonomous embedded systems in some application fields e.g. building
infrastructure and automotive.

= in-depth course at EMPA, Duebendorf, Switzerland
= October 28, 2024, 9:00-17:00
= more info at https://fsrm.ch/doc/c419.php?lang=e

&M;EKQ
. PSMA :
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