

EnerHarv 2024 Workshop: Unlocking the Potential of EH-based IoT Systems through Intermittent Computing and Cutting-edge Energy and Time Management

Presented By –

Domenico Balsamo, Dr

Newcastle University, UK

Domenico.Balsamo@ncl.ac.uk

Thursday, June 27, 2024

OVERVIEW

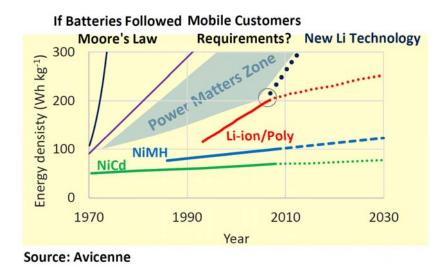
Research Vision

- IoT Nightmare: Power Availability
- Energy Harvesting
- Towards Intermittent Computing...

Intermittent Computing

- Hibernus
- However, Challenges Persist...

Energy and Time Management


- What do we need?
- Energy and Control Flow
- Systems Execution Flow
- System Design

Results and Discussion

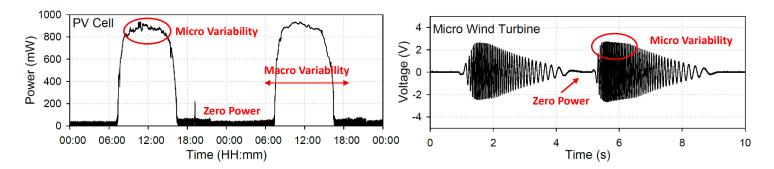
IOT NIGHTMARE: POWER AVAILABILITY

The ubiquitous computing dream of IoT everywhere is accompanied by the nightmare of battery replacement

Battery Technology is Stuck No Moore's Law in batteries: 2-3%/year growth

IoT systems lifetime depends on battery life!

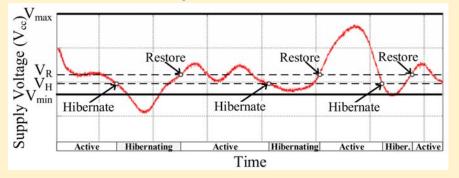
Solution: Design IoT systems that harvest limited energy from ambient or scavenge power from human activity


ENERGY HARVESTING: CHALLENGES

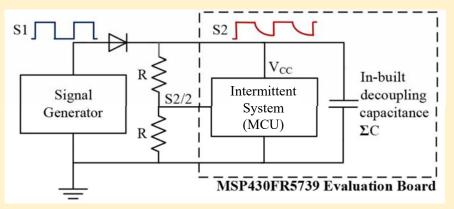
Different energy harvesting methods, such as solar, wind, and thermal, all face a common challenge...

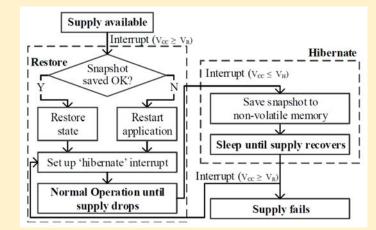
...energy can be potentially limitless, but **instantaneous power is often uncontrollable** as it relies on the source and environment.

TOWARDS INTERMITTENT COMPUTING...


Dynamic and uncontrollable power generation with periods of ZERO POWER

Intermittent computing, utilising non-volatile memory (NVM) to maintain system state during periods of zero power, addresses the unpredictability of energy harvesting (EH) in IoT systems




INTERMITTENT COMPUTING: HIBERNUS

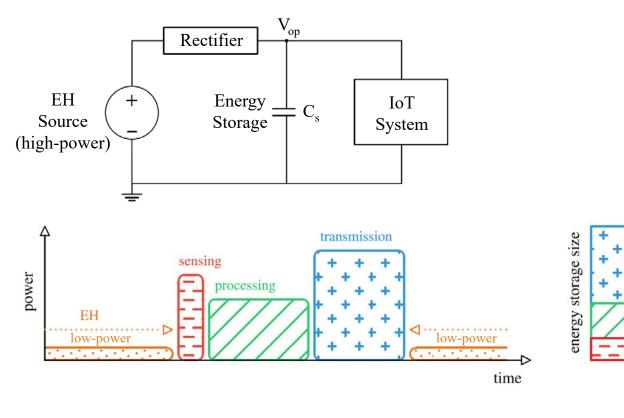
Operation

Test Platform

Flowchart

Library

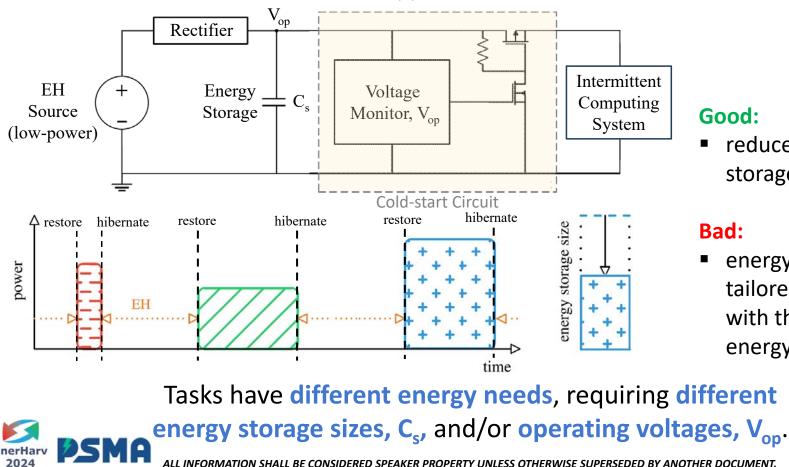
#include "hibernus.h"


int main (void) {
if (flag) restore(); //restore system state
 else initialise(); //initialise hibernus
// application code goes here

_interrupt void COMP_D_ISR(void) {
hibernate(); //save system state & sleep

INTERMITTENT COMPUTING: HIBERNUS

HOWEVER, CHALLENGES PERSIST...



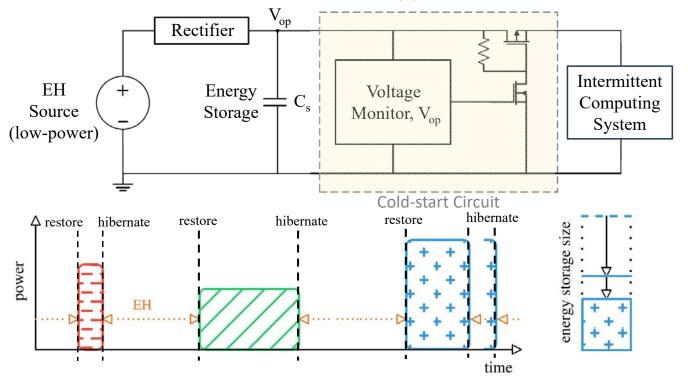
2024

Bad:

- large energy storage tailored for the entire application.
- long charging times and delayed start-up
- a portion of the energy is wasted in low-power mode.

HOWEVER, CHALLENGES PERSIST...

Good:


reduced energy storage size

Bad:

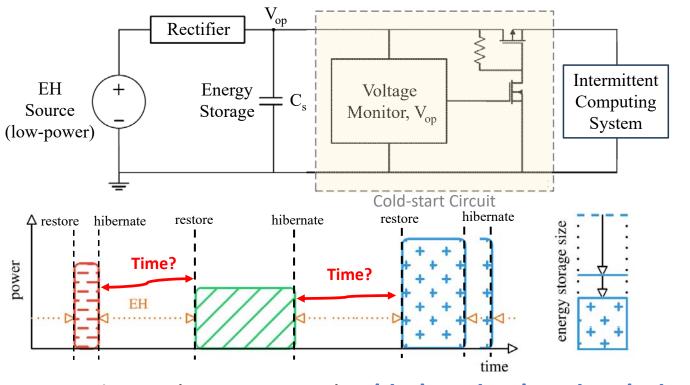
energy storage is tailored to the task with the highest energy consumption.

PROPERTY UNLESS OTHERWISE SUPERSEDED BY ANOTHER DOCUMENT.

HOWEVER, CHALLENGES PERSIST...

2024

Good:


 reduced energy storage size

Bad:

 energy storage is tailored to the task with the highest energy consumption.

The energy required even for the same task, can change over time, which is not ideal when a fixed storage is used.

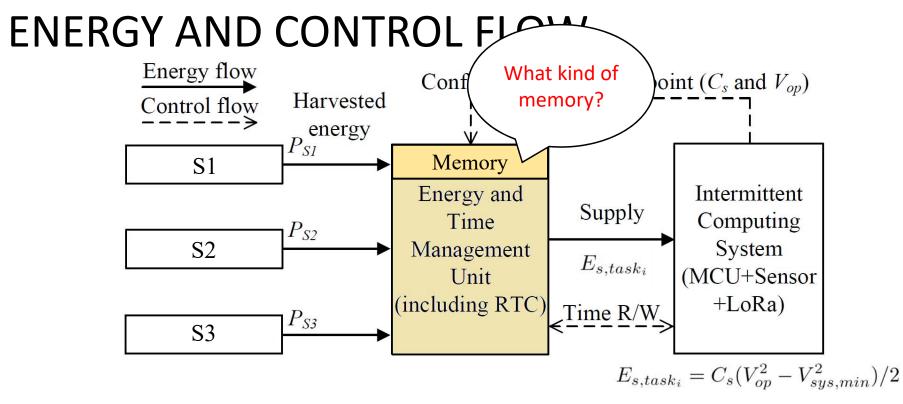
HOWEVER, CHALLENGES PERSIST ...

2024

Good:

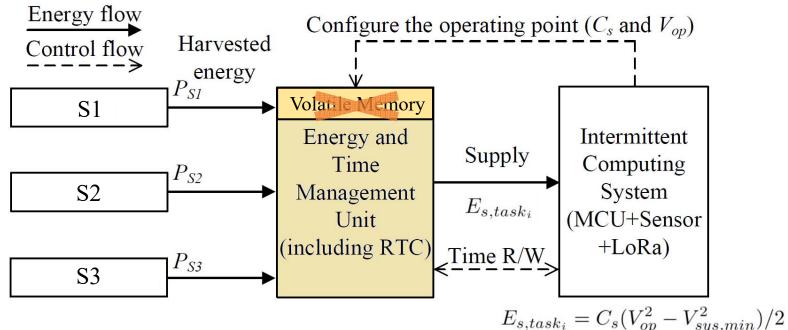
 reduced energy storage size

Bad:

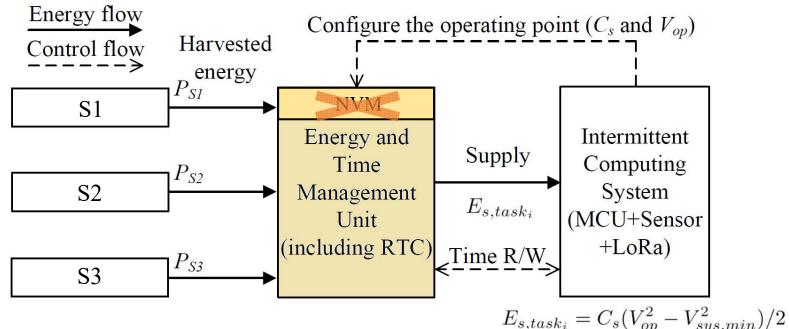

 energy storage is tailored to the task with the highest energy consumption.

Intermittent computing hinders timekeeping during shutdowns,

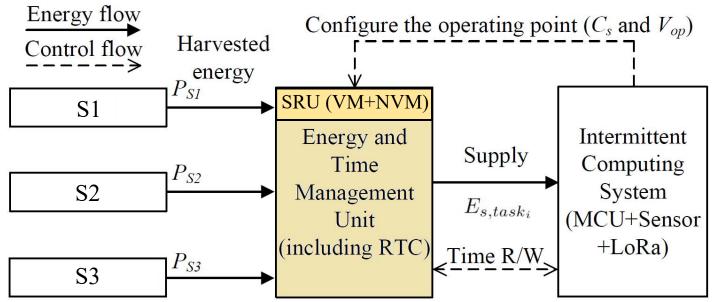
impeding real-time data collection and processing.


WHAT DO WE NEED?

An energy and time management unit (ETMU) for intermittent computing systems, which facilitates energy-aware task operations and timekeeping capabilities using multi-harvest energy sources.


This ETMU enables adjusting C_s and V_{op} (operating point) to provide the required energy for the next task, E_{s,task}, and incorporates a low power RTC to ensure timekeeping while system is powered off.

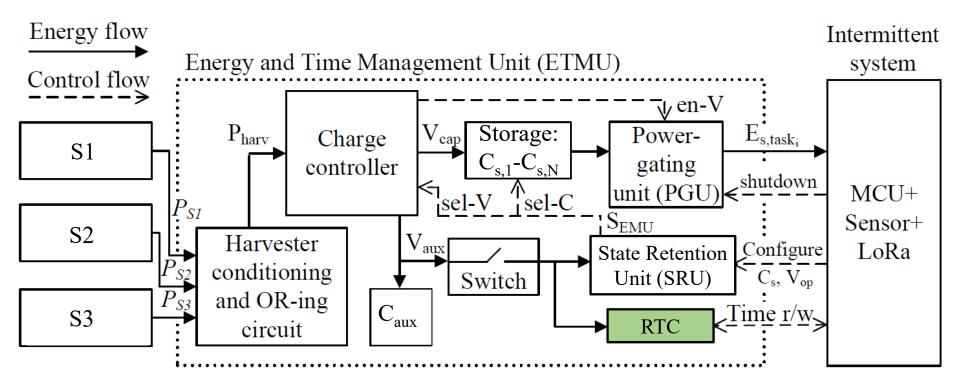
ENERGY AND CONTROL FLOW


During power outages, Volatile Memory (VM) cannot preserve this operating point (Cs and Vop).

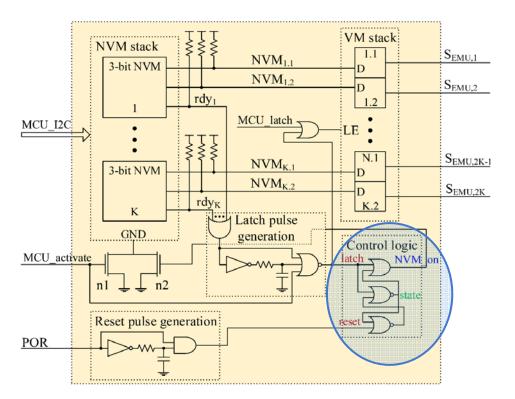
ENERGY AND CONTROL FLOW

Non-Volatile Memory (NVM) elements consume too much energy that is unaffordable for low-power systems.

ENERGY AND CONTROL FLOW



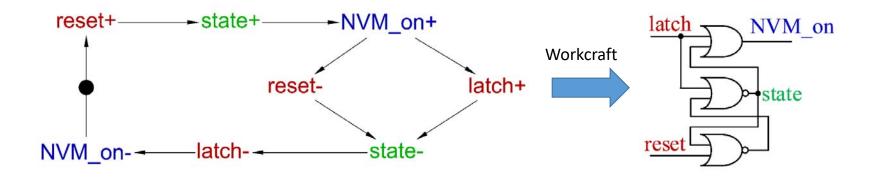
Solution: A state retention unit (SRU) incorporates an NVM+VM approach that includes both NVM and VM benefits, avoiding their drawbacks.


How it works: The operating point (Cs and Vop) is primarily maintained on VM elements, whilst the NVM elements are activated sporadically.

SYSTEM DESIGN

2024

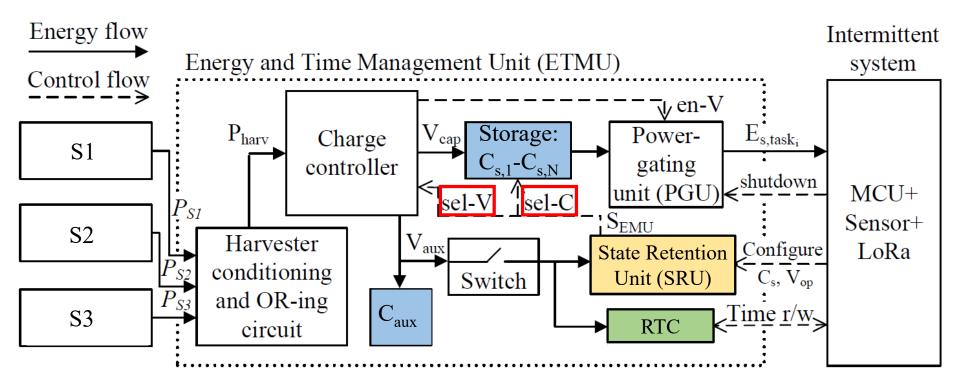
STATE RETENTION UNIT (SRU)



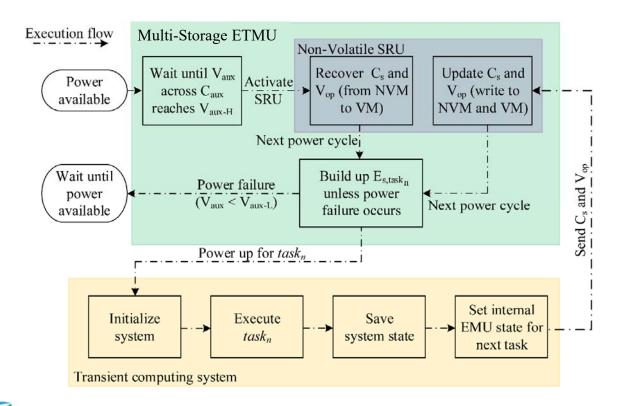
The SRU manages the operating point $(C_s \text{ and } V_{op})$ keeping it in VM during normal operation and restoring it from NVM when needed:

- Operating point update write from MCU to NVM + write from NVM to VM.
- Operating point recovery write from NVM to VM.

Control logic activates the NVM when restoring the operating point after a power outage and deactivates it, when This operating point is restored.


CONTROL LOGIC

- Control logic is a state machine designed using asynchronous design method.
- Signal Transition Graph (STG) is a special type of Petri net whose transitions are associated with the rising and falling edges of signals.
- Workcraft environment synthesises an asynchronous circuit from the formal (using STG) specification.


SYSTEM DESIGN

2024

SYSTEM EXECUTION FLOW

2024

- The execution flow involves the interaction between the ETMU and the intermittent system.
- The SRU uses an auxiliary storage, C_{aux}, for supply. Its voltage, V_{aux}, is monitored to check if power is available.

EXPERIMENTAL PROTOTYPE AND EXECUTED TASKS

	Task	E_{task}	C_s	V_{op}	$sel-C_{1,0}$	$sel-V_{1,0}$
	Ultrasonic sensing	2.1mJ	15mF	2.5V	0 0	0 0
u	SF7, Tx=2-9dBm		15mF	3.3V	0 0	0 1
ommunication	SF7, Tx=10-14dBm	51.5mJ	22mF	3.3V	0 1	01
ica	SF8, Tx=14dBm	71.0mJ	15mF	4.1V	0 0	10
un	SF9, Tx=14dBm	107mJ	22mF	4.1V	01	10
	SF10, Tx=14dBm	170mJ	22mF	5V	01	11
Jon 1	SF11, Tx=14dBm	338mJ	47mF	5V	10	11
	SF12, Tx=14dBm	595mJ	100mF	5V	11	11

- The prototype of the ETMU can select between 4 C_s and 4 V_{op} resulting in 16 possible ETMU internal states.
- The ultrasonic measurement (task 1) requires a fixed amount of energy.
- The LoRa transmission (task 2) is executed with different communication parameters, i.e., **Spreading Factor (SF) and transmitting power (Tx)**, resulting in varying energy required.

INTERMITTENT SYSTEM OPERATION FOR SCENARIO 1

Rx

Pkt

N

3

4

5

6

SF

12

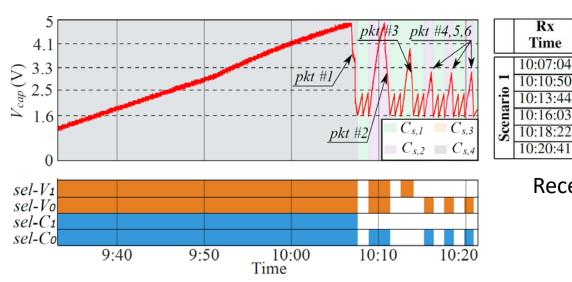
10

8

Тх

(dBm)

14


14

14

14

14

14

Received LoRAWAN data at the gateway in Scenario 1

RSSI

 (\mathbf{dB})

-114

-112

-101

-97

-97

-96

Time1

10:07:56

10:11:42

10:14:36

10:16:55

10:19:14

SNR

2.2

10.8

7.5

8

8.8

Data

Time2

10:08:30

10:12:16

10.15.10

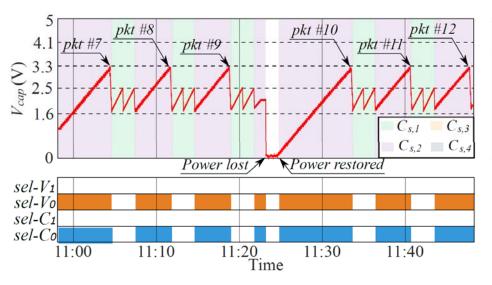
10:19:48

Q2

Q1

9.5

9.6


9

9

System powered by an outdoor PV cell while moving towards the gateway

PROPERTY UNLESS OTHERWISE SUPERSEDED BY ANOTHER DOCUMENT.

INTERMITTENT SYSTEM OPERATION FOR SCENARIO 2

System powered by an indoor PV cell and is located close to the gateway

	Rx	Pkt		Tx (dBm)	SNR	RSSI	Data			
	Time	Ν				(dB)	Time1	Q1	Time2	Q2
rio 2	11:05:15	7	7	14	9.2	-98	10:21:33	9.6	10:22:07	9.4
	11:12:13	8	7	14	8.5	-100	11:06:42	9.4	11:08:09	9.6
	11:19:10	9	7	14	7.5	-98	11:13:40	9.4	11:15:07	9.5
ena	11:33:39	10	7	14	8	-97	11:20:37	9.7	11:22:40	9.6
Sce	11:40:37	11	7	14	7.2	-97	11:35:06	9.5	11:36:33	9.6
	11:47:35	12	7	14	6.8	-98	11:42:04	9.5	11:43:31	9.3

Received LoRAWAN data at the gateway in Scenario 2

	C_s (mF)	V_{op} (V)	Start-up time (s)	Charging time (s)
Case 1	100	5	2604	114
Case 2	22	3.3	308	62

Start-up and charging times for the system powered by TEG with fixed PS1 = 5mW, and SF7 and Tx = 14dBm

CONCLUSIONS

- A multi-storage ETMU incorporating a non-volatile SRU for taskbased intermittent systems. The ETMU allows selecting the operating voltage and energy storage size for the next task, i.e., the internal EMU state, at run-time and keeping track of time.
- Thanks to the hybrid NVM+VM approach adopted, the ETMU can reliably maintain its internal state during a power outage and recover it once power is available.
- Future studies will investigate how to determine the energy requirements of each task automatically, without knowing them in advance, using various learning mechanisms, e.g., reinforcement learning.

MICROSYSTEMS RESEARCH GROUP

Q & A

Thanks very much for your time and attention!

Questions/comments???

