

EnerHarv 2024 Workshop:

Optimizing Energy harvesting micro power design & ecosystem elements choice for better system performance

Presented By-

Bruno DAMIEN Ecosystem and Partner Marketing Director

e-peas bruno.damien@e-peas.com

Wednesday, June 28, 2024

Content of this presentation

- 🔯 Context
- Introducing e-peas : an Energy Harvesting PMIC Company
- Energy Harvesting power supply system considerations
- Architecture choice for power conversion efficiency in Energy Harvesting
- Reaching 95% energy conversion efficiency with good practices
- 4 corners validation
- e-peas PMIC portfolio outlook
- Invitation to demo
- Conclusions

Introducing

an Energy Harvesting PMIC company

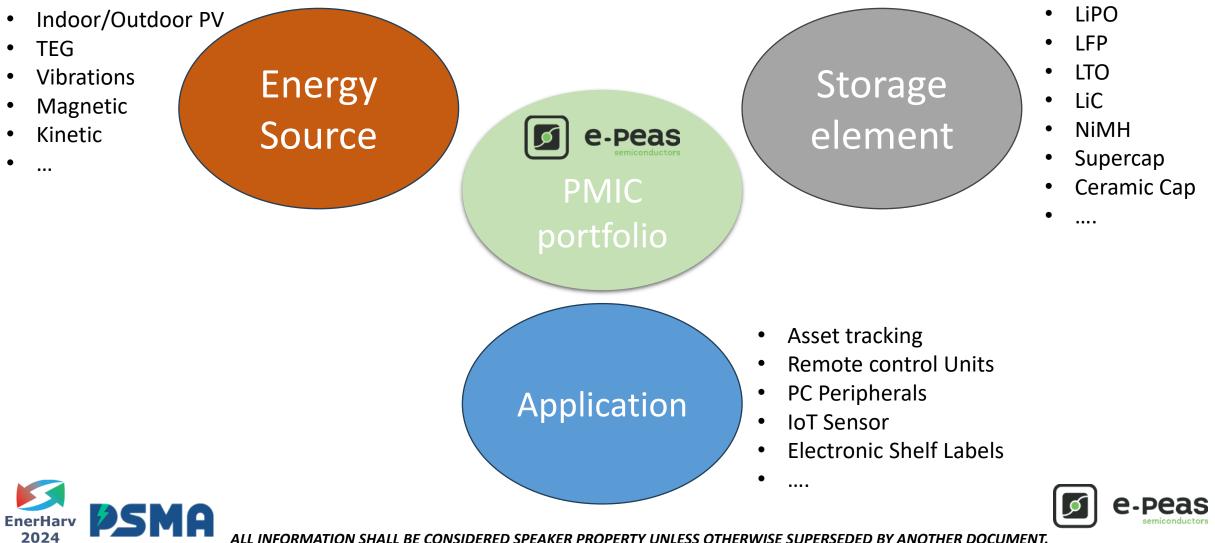
Key focus application

Energy Harvesting offers a solution to those problems as it removes batteries maintenance costs and pains as well as environmental impacts and allows for feature rich devices to live longer

ø

e-peas

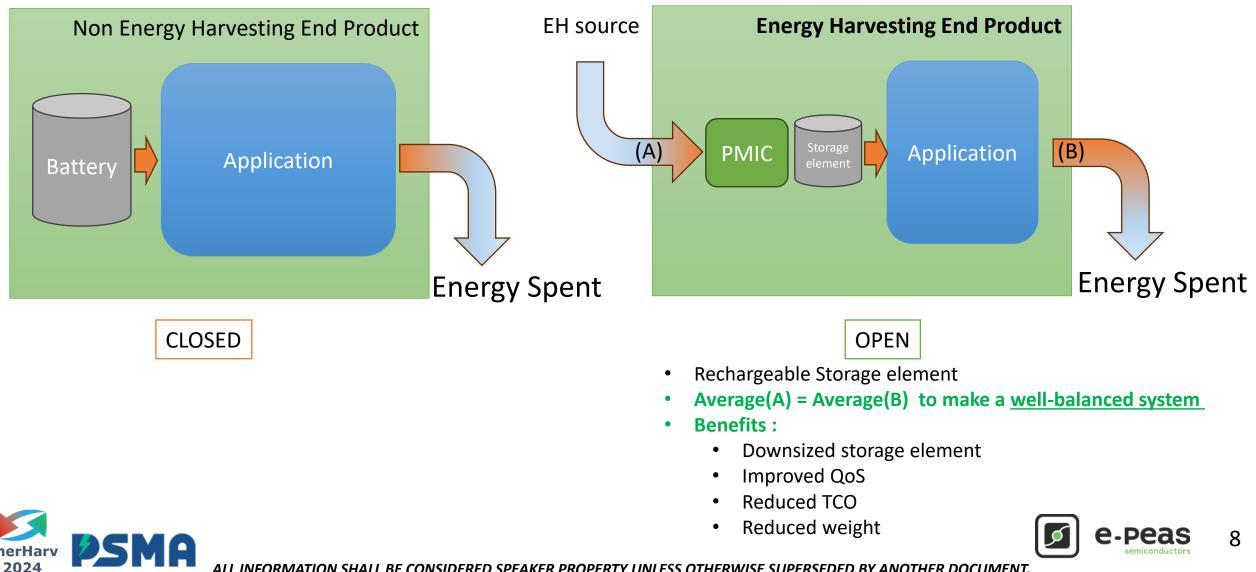
It is gaining traction in high volume applications among which It is gaining traction in high volume applications among which It is gaining traction in high volume applications among which It is gaining traction in high volume applications among which It is gaining traction in high volume applications among which It is gaining traction in high volume applications among which It is gaining traction in high volume applications among which It is gaining traction in high volume applications among which It is gaining traction in high volume applications among which It is gaining traction in high volume applications among which will be applied to the second sec


Energy Harvesting is the solution

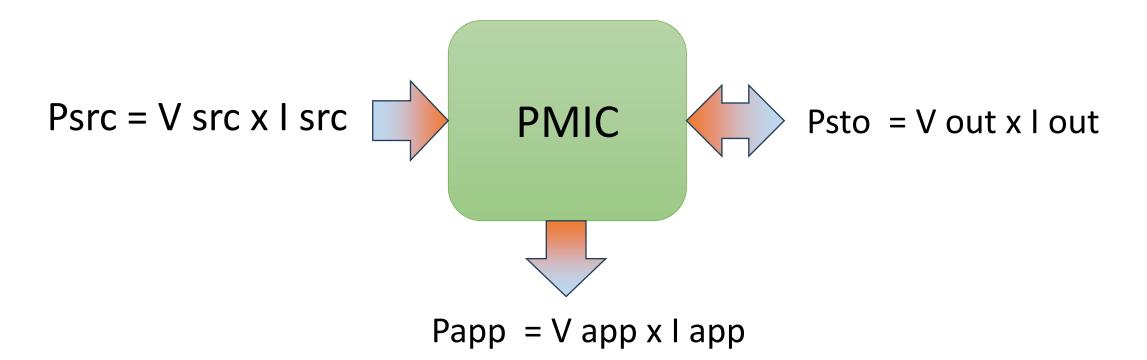
- e-peas is specialized in ultralow power electronics for Energy Harvesting.
- E-peas PMICs give energy to IoT products.
- We focus on :
 - SMART SENSOR,
 - REMOTE CONTROL UNITS,
 - PC PERIPHERALS,
 - ELECTRONIC SHELF LABELS,
 - WATCHES and WEARABLE DEVICEs
- There is clear market traction for using energy harvesting in those applications.

Ecosystem and Partners

Energy Harvesting System Landscape



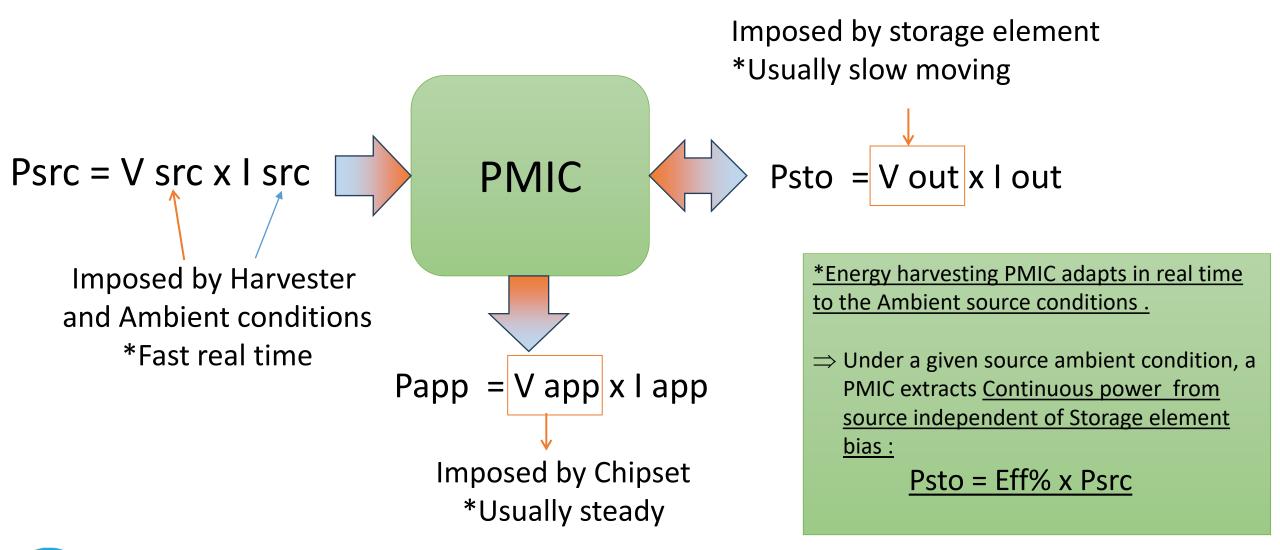
ALL INFORMATION SHALL BE CONSIDE KER PROPERTY UNLESS OTHERWISE SUPERSEDED BY ANOTHER DOCUMENT. 6


Energy Harvesting System -Design considerations

Towards a fully balanced system

From closed to open Energy Source

PMIC : a continuous-power converter


An e-peas PMIC "isolates" all 3 domains : It provides continuous, constant power transfer efficiency from left to right, regardless of STORAGE conditions, until Storage is fully charged.

q

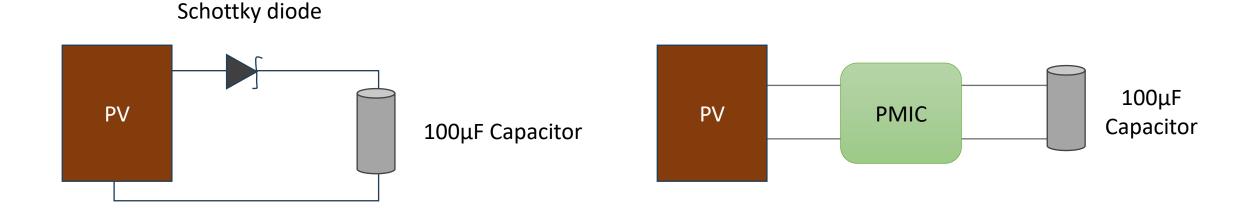
PMIC : a continuous power converter

10

Energy Harveting PMIC role

ISOLATE SOURCE from STORAGE dependencies.

ISOLATE APPLICATION supply from the rest.



Power extraction conversion efficiency

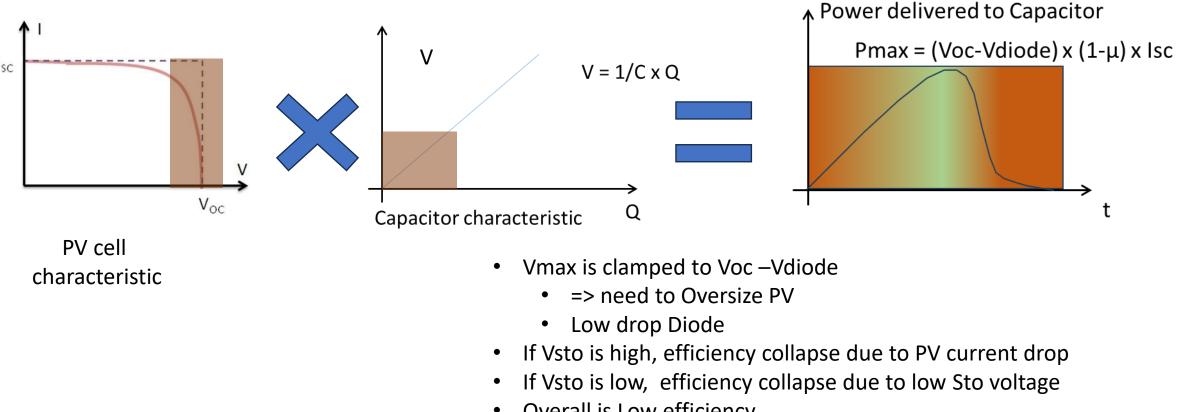
Comparing 2 popular architectures

Energy extraction concepts

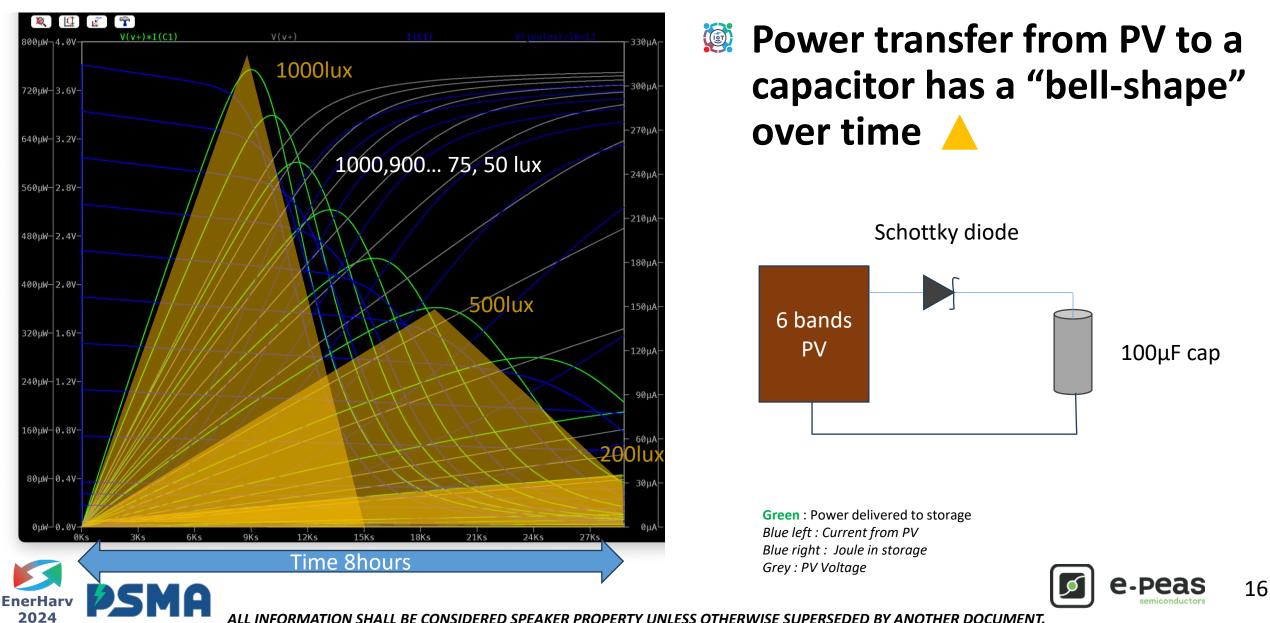
Time dependent power transfer

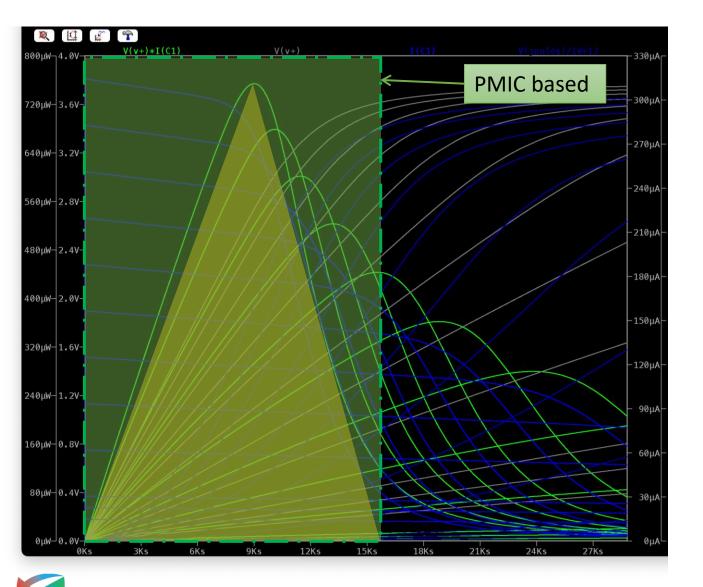

Low performance

Continuous power transfer


Good practice

Variable power transfer architecture

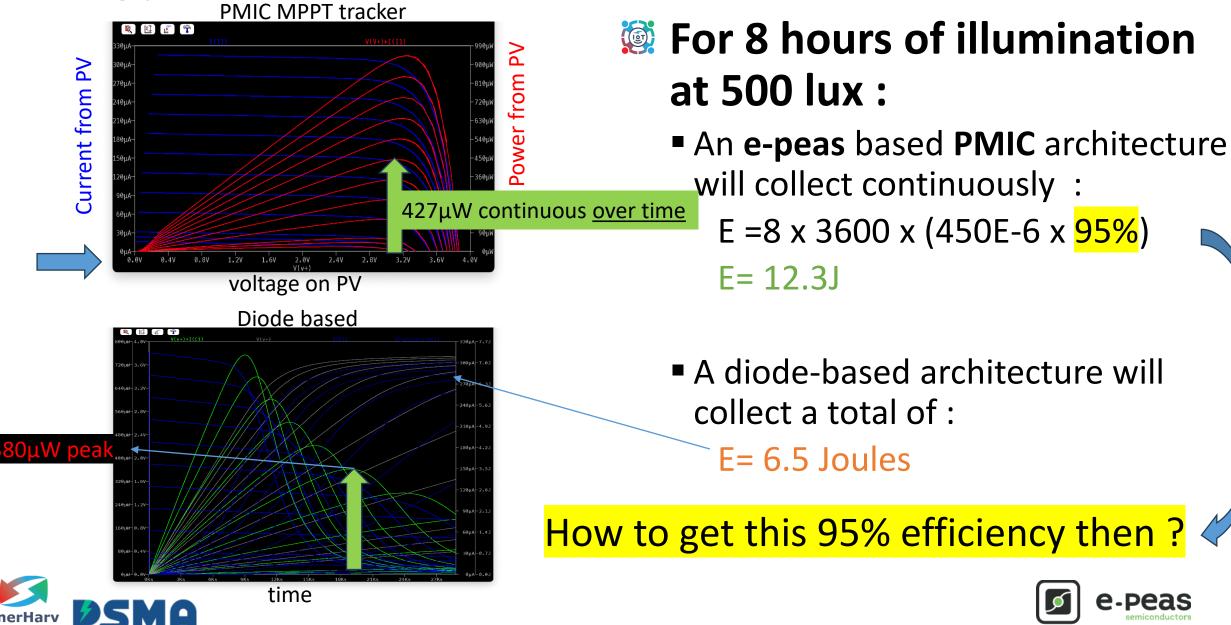

PV + Diode + Super cap power transfer is time dependent:


- Overall is Low efficiency
- Plus there is no energy extraction at low lux

Spice model of diode-based power transfer over time

Comparison with PMIC Power transfer over time

2024


Constant power transfer with EH PMIC is ~2 x more efficient

> \Rightarrow For best practice, go for PMIC \bigcirc

Green : Power to storage Blue left : Current from PV Blue right : Joule in storage Grey : PV Voltage

Energy-wise

LL INFORMATION SHALL BE CONSIDERED SPEAKER PROPERTY UNLESS OTHERWISE SUPERSEDED BY ANOTHER DOCUMENT.

18

PMIC with 95% energy conversion efficiency

Guaranteeing performance by design

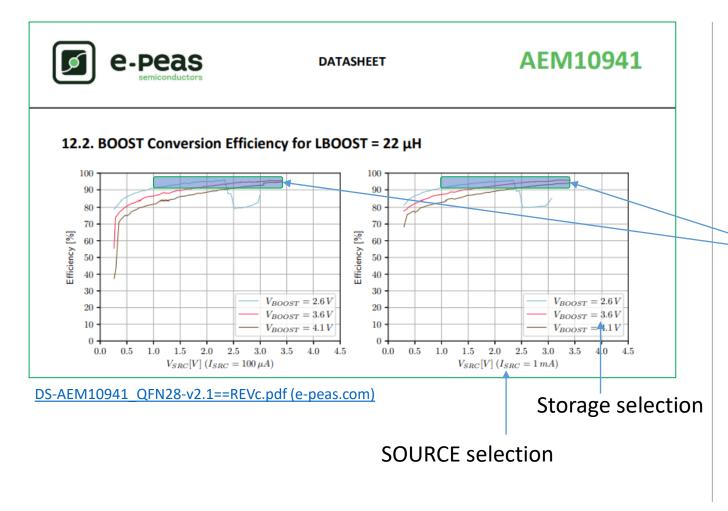
Good Energy Harvesting PMIC challenges

Bias Energy source at Maximum power capability

Maximum Power Point Tracking

Be very efficient in Power conversion from Source to Storage

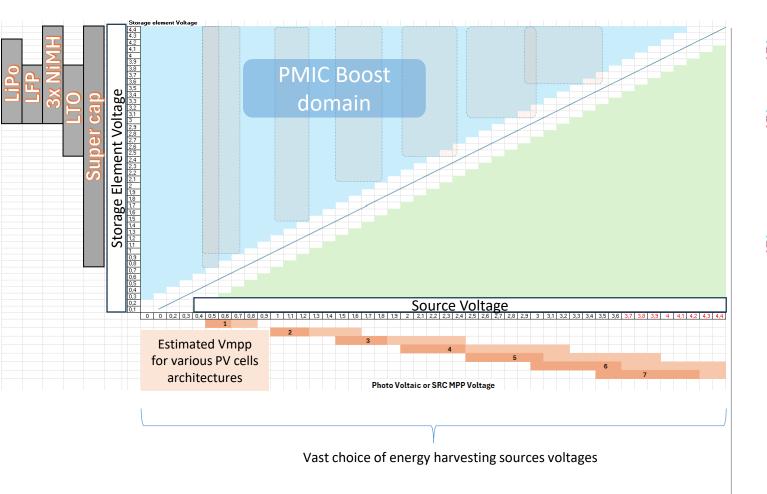
90-98%


Maintain performance over variable conditions

- Isolate Source bias point from Storage and application bias points
- Make Tracking over time
- Design the system accordingly

Supply the application

Draw highest Energy efficiency domain in PMIC Data sheet


AEM10941 as an example

A BOOST PMIC optimized for :

- <u>Maximum power point tracking</u> from source
- AND
- Highest efficiency
- 95% conversion efficiency from Energy harvester Source to Storage element
- Conditional to :
 - Selecting ideal <u>combination</u> of Source + Storage combination
 - Work in Boost conversion domain
- BUCK PMICs work opposite

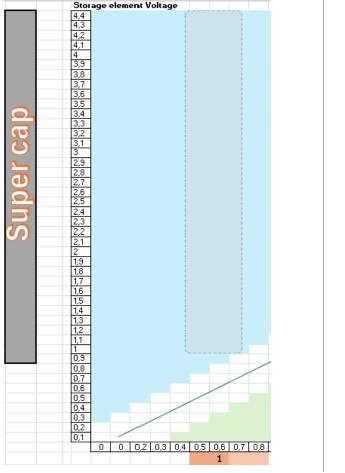
Fitting the ideal ecosystem with PMIC

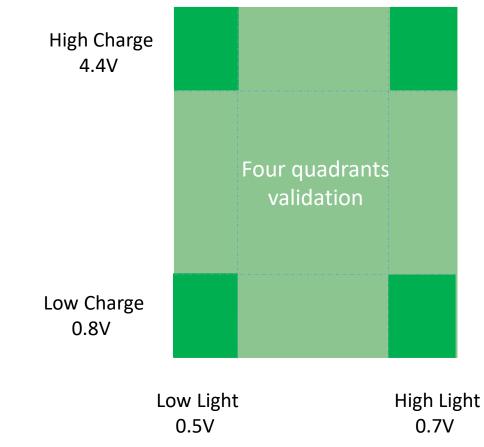
Let's consider AEM10941 architecture

- Be sure to operate in **BOOST** mode
 - Solution of boost < Vout of boost</p>
 - => Select appropriate PV architecture vs Storage
- Nothing is forcing designer to use high voltage source :
 - Low Voltage PVs' are also a good strategic fit

Example of 4 quadrants validation of EH source

vs Storage element


Super cap voltage range:


- 0.8V (Full discharge)
- 4.4V (Full charge)

Single element PV Mpp range

- 0.5v (Low light)
- 0.7v (High light)

Guaranty of Highest efficiency

Whatever the situation

Vsource << V storage element : we are safe

e-peas PMIC Portfolio overview

Allowing flexibility over

Energy Harvesting sources

and Storage Elements choices

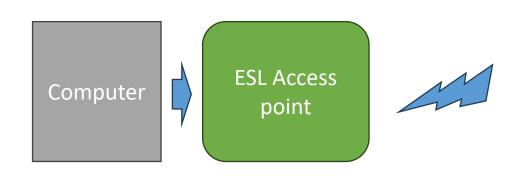
Step-by-step PMIC selection process

🚺 e-peas		AEM10941	AEM10330	AEM10920	AEM10300	AEM10900	AEM00920	AEM00940 AEM00941	AEM00330	AEM00300	AEM00900 AEM00901	AEM30940	AEM30330	AEM30300	AEM20940	AEM13
ENERGY HARVESTER SOURCE	Indoor / Outdoor PV Cell						1									
	Thermo Electric Generator											1				
	RF Antenna															
	Vibration Transducer															
	Pulse Generator															
SPECIAL PURPOSE INPUTS	Harvester inputs	Single	Single	Single	Single	Single	Single	Single	Single	Single	Single	Single	Single	Single	Single	DU
	Primary Battery input															
	5Volt input for Quick charge															
STORAGE ELEMENT PROTECTIONS	GPIO Configurations	7 presets	15 presets	4 presets	15 presets	8 presets + 64 with I2C	4 presets	7 presets	15 presets	15 presets	8 presets + 64 with I2C	7 presets	15 presets	15 presets	7 presets	8 pre
	Storage voltage range	0V to 4.5V	0V to 4.65V	2.5V-4.35V	OV to 4.65V	2.8V to 4.8V	2.5V-4.35V	0V to 4.5V	0V to 4.65V	0V to 4.65V	2.8V to 4.8V	0V to 4.5V	0V to 4.65V	0V to 4.65V	0V to 4.5V	2.5V-
	Custom mode with GPIO															
	Temperature Protection															
LOAD SUPPLY REGULATION TYPE	Storage charger															
	Regulation type	2 LDOs	1 Buck/Boost	1Buck			1Buck	2 LDOs	1 Buck/Boost			2 LDOs	1 Buck/Boost		2 LDOs	18
LOAD SUPPLY Voltage		7 presets	6 presets	3 presets			3 presets	7 presets	6 presets			7 presets	6 presets		7 presets	8 pre
	Voltage value	1.2V - 4.1V	5	2.2V-2.8V			2.2V-2.8V	1.2V - 4.1V	1.2V - 3.3V			1.2V - 4.1V	1.2V - 3.3V		1.2V - 4.1V	0.6-
MPPT MODE	Adaptive MPPT			2												
	Fixed voltage															
CONFIGURATION	I2C interface															
	GPIO															
ADVANCED FEATURES	Average Power Monitor					APM on Sto					APM on Sto					AF on So and
	Shipping mode															
TEMPERATURE RANGE	Industrial (-40 +85 C)															
PACKAGING	The state	QFN 28 5x5mm	QFN 40 5x5mm	QFN 24 4x4mm	QFN 28 4x4mm	QFN 28 4x4mm	QFN 24 4x4mm	QFN 28 5x5mm	QFN 40 5x5mm	QFN 28 4x4mm	QFN 28 4x4mm	QFN 28 5x5mm	QFN 40 5x5mm	QFN 28 4x4mm	QFN 28 5x5mm	QFN 5x5
	Type / Body size					WLCSP 16 2x2mm					WLCSP 16 2x2mm					

0 BOOST

- AEM10941 00940
- AEM10900 00900
- AEM10920 00920
- AEM20940 30940
- AEM13920

0 BUCK


- AEM10300 10330
- AEM30300 30330
- AEM 00300 00330

25

DEMO

A fully autonomous <u>Electronic Shelf Label</u> with VGA screen and Bluetooth 5.4 PAwR

DSSC PV

Organic PV

AEM00920

e-peas

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><list-item><section-header><section-header><list-item><section-header>

Electronic Shelf Label Ecosystem

🚺 e-peas

AEM10330

Perovskite PV

Product integration examples

DSSC PV

Organic PV

Perovskite PV

Conclusions

- Fully autonomous Energy Harvesting OEM Products are real.
- PMIC based architectures demonstrate best Energy efficiency (95%)
- Adequate combination of Ecosystem elements with PMIC is key for successful implementation (secure 95% with 4 corners operations)
- Boost or Buck : both options are available.
- EH PMIC-based architecture are best in many respects :
 - Size , Weight
 - QoS
 - Cost

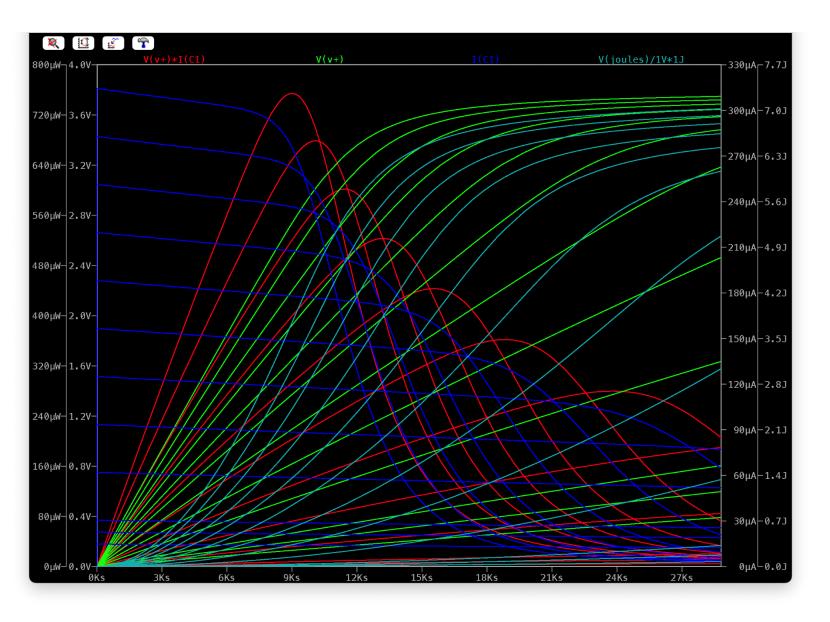
E-peas EH PMIC portfolio enable designers' high degree of freedom.

References

- Datasheets
 - DS-AEM10941_QFN28-v2.1==REVc.pdf (e-peas.com)
 - AEM13920 Dual Source Energy Harvesting | e-peas
 - AEM10920 PMIC for RCUs & Keyboards | Energy Harvesting | e-peas
 - AEM00920 PMIC for remote control and keyboard | Energy Harvesting | e-peas
- Where to buy ?
 - e-peas Distributor | Mouser Belgique
- Selector guide
 - AEM Selector Guide E-peas
- Social Network
 - e-peas | LinkedIn

Q & A

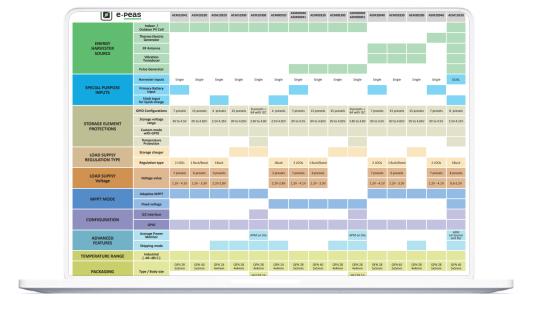
2024


Thanks very much for your time and attention!

Questions/comments???

31

Back-up



ALL INFORMATION SHALL BE CONSIDERED SPEAKER PROPERTY UNLESS OTHERWISE SUPERSEDED BY ANOTHER DOCUMENT.

e-peas

PMIC selection resources

AEM Selector Guide - E-peas

- Interactive tool
- Brochure 🕅

