

EnerHarv 2024 Workshop:

Roadmap on Energy Harvesting Materials

ORGANIZER **SPONSORS**

BODO S POWER Systems

Presented By –

Thomas m. Brown, PhD

CHOSE, Tor Vergata University of Rome thomas.brown@uniroma2.it

Thursday, June 27, 2024

OVERVIEW

EXA: Roadmap on Energy Harvesting Materials: organization of article

- *Different types of energy harvesting*
- **Status and challenges**

'Roadmap on Energy Harvesting Materials'

- • Milestone publication charting the course for energy harvesting materials to deliver clean energy anytime, anywhere
- • Collaborative endeavour organized by **prof. Vincenzo Pecunia, Simon Fraser University (Canada),** bringing together 116 leading experts from around the world

From the publisher of the Journal of Physics series

ROADMAP

Roadmap on energy harvesting materials

Vincenzo Pecunia et al

Prof. V. Pecunia

Publishing JPhys Materials physics and

ALL INFORMATION SHALL BE CONSIDERED SPEAKER PROPERTY UNLESS OTHERWISE SUPERSEDED BY ANOTHER DOCUMENT.

3

Roadmap on energy harvesting materials

52 section articles organized in:

- •**Status**
- •**Current and future challenges**
- • **Advances in science and technology to meet challenges**
- •**Concluding remarks**

Roadmap on energy harvesting materials, V. Pecunia et al. J. Phys. Mater. 6 (2023) 042501

ALL INFORMATION SHALL BE CONSIDERED SPEAKER PROPERTY UNLESS OTHERWISE SUPERSEDED BY ANOTHER DOCUMENT.

Publications per year for the various energy harvesting technologies covered in Roadmap

Why look at the status of energy harvesting materials?

Let's look at photovoltaics as an example:

JPhys Materials

Publishing

EnerHar 2024

- •The most widespread photovoltaic technology is based on silicon
- • But a much wider range of technologies, based on a variety of materials, are being developed to realize next-generation photovoltaics

physicsworld

Prof. V. Pecunia

5

1901. GP 5375774976-11. I

 $\mathbf{A}_3\mathbf{B}_2(\mathbf{X},\!mathbf{X}^2)_{9}$

6 $A_xB_yX_{x+3y}$

SFI

Materials for indoor photovoltaics

IOP Publishing

J. Phys. Mater. 6 (2023) 042501

Contents

- 2. Materials for indoor photovoltaics
- 2.1. Introduction to indoor photovoltaics
- 2.2. III-V compound semiconductors for indoor photovoltaics
- 2.3. CdTe solar cells for indoor applications
- 2.4. Kesterites for indoor photovoltaics
- 2.5. Organic photovoltaics for indoor-light-to-electricity conversion
- 2.6. Dye-sensitized photovoltaics for indoor applications
- 2.7. Lead-halide perovskites for indoor photovoltaics
- 2.8. Lead-free halide perovskites and derivatives for indoor photovoltaics
- 2.9. Quantum-dot absorbers for indoor photovoltaics
- 2.10. Accurate characterization of indoor photovoltaic performance

Indoor PCE of champion devices of PV technologies indoors for illuminance ∼1000 lx. Perovskite Solar cells at ∼ 40%There is space to improve & many challenges ahead!

EnerHar

*ALL INFORMATION SHALL BE CONSIDERED SPEAKER PROPERTY UNLESS OTHERWISE SUPERSEDED BY ANOTHER DOCUMENT.*Roadmap on energy harvesting materials, sect. 2.1 V. Pecunia et al. J. Phys. Mater. 6 (2023) 042501

Materials for piezoelectric energy harvesting

- 3. Materials for piezoelectric energy harvesting
- 3.1. Introduction to piezoelectric energy harvesting—lead-based oxide perovskites
- 3.2. Lead-free oxide perovskites for piezoelectric energy harvesting
- 3.3. Nanostructured inorganics for piezoelectric energy harvesting
- 3.4. Nitrides for piezoelectric energy harvesting
- 3.5. Two-dimensional materials for piezoelectric energy harvesting
- 3.6. Organics for piezoelectric energy harvesting
- 3.7. Bio-inspired materials for piezoelectric energy harvesting

output voltage and current density values reported for the nanocomposites

Roadmap on energy harvesting materials, sect. 3.3, V. Pecunia et al. J. Phys. Mater. 6 (2023) 042501

Materials for triboelectric energy harvesting

- 4. Materials for triboelectric energy harvesting
- 4.1. Introduction to materials for triboelectric energy harvesting
- 4.2. Synthetic polymers for triboelectric energy harvesting
- 4.3. Nanocomposites for triboelectric energy harvesting
- 4.4. Surface texturing and functionalization for triboelectric energy harvesting
- Nature-inspired materials for triboelectric energy harvesting $4.5.$
- MXenes materials for triboelectric energy harvesting 4.6.
- Perovskite-based triboelectric nanogenerators
- Towards self-powered woven wearables via triboelectric nanogenerators 4.8.
- 4.9. Theoretical investigations towards the materials optimization for triboelectric

A wearable energy storage system via self-charged humanbody bioenergy, including body motions, heat, and biofluids.

*ALL INFORMATION SHALL BE CONSIDERED SPEAKER PROPERTY UNLESS OTHERWISE SUPERSEDED BY ANOTHER DOCUMENT.*Roadmap on energy harvesting materials, sect. 4, V. Pecunia et al. J. Phys. Mater. 6 (2023) 042501

Materials for thermoelectric energy harvesting

- 5. Materials for thermoelectric energy harvesting
- 5.1. Introduction on materials for thermoelectric energy harvesting
- 5.2. Chalcogenides for thermoelectric energy harvesting
- 5.3. Full Heuslers for thermoelectric energy harvesting
- 5.4. Half Heuslers for thermoelectric energy harvesting
- 5.5. Clathrates for thermoelectric energy harvesting
- 5.6. Skutterudites for thermoelectric energy harvesting
- 5.7. Oxides for thermoelectric energy harvesting
- 5.8. SiGe for thermoelectric energy harvesting
- 5.9. Mg_2 IV (IV = Si, Ge and Sn)-based systems for thermoelectric
- 5.10. Zintl phases for thermoelectric energy harvesting
- 5.11. Molybdenum-based cluster chalcogenides as high-temperature
- 5.12. Organic thermoelectrics

EnerHar 2024

- 5.13. Two-dimensional materials for thermoelectric applications
- 5.14. Carbon nanotubes for thermoelectric energy harvesting
- 5.15. Polymer-carbon composites for thermoelectric energy harvesting
- 5.16. Hybrid organic-inorganic thermoelectrics
- 5.17. Halide perovskites for thermoelectric energy harvesting
- 5.18. Metal organic frameworks for thermoelectric energy conversion

thermoelectric device for power generation
(a) $\frac{1}{\text{Hot side}}$

different configurations in wearable thermoelectric generators:

*ALL INFORMATION SHALL BE CONSIDERED SPEAKER PROPERTY UNLESS OTHERWISE SUPERSEDED BY ANOTHER DOCUMENT.*Roadmap on energy harvesting materials, sect. 5, V. Pecunia et al. J. Phys. Mater. 6 (2023) 042501

Materials for radiofrequency energy harvesting

6. Materials for radiofrequency energy harvesting 6.1. Introduction to materials for radiofrequency energy harvesting $6.2.$ Organic semiconductors for radiofrequency rectifying devices 6.3. Metal-oxide semiconductors for radiofrequency rectifying devices Carbon nanotubes for radiofrequency rectifying devices 6.4. 6.5. Two-dimensional materials for radiofrequency energy harvesting 6.6. Materials for rectennas and radiofrequency energy harvesters

cut-off frequency of state-of-the-art rectifying devices based on carbon nanotubes and other materials

The evolution of large-area rectennas:

EnerHarv

Roadmap on energy harvesting materials, sect. 6, V. Pecunia et al. J. Phys. Mater. 6 (2023) 042501

Energy Harvesting for Sustainable Development

ALL INFORMATION SHALL BE CONSIDERED SPEAKER PROPERTY UNLESS ON A LATER SUPERSEDED BY A

2024

Roadmap on Energy Harvesting Materials

•**Key challenges:**

•

EnerHary 2024

- •**Efficiency**
- •**Stability**
- •**Manufacturability**
- •**Environmental Sustainability**
- •**Cost**
- •**Form Factors**

7. Sustainability considerations on energy harvesting materials research

 Our recent roadmap provides guidance on key challenges and promising directions to unlock the potential of nextgeneration energy harvesting materials.

 $\&$ A

Thanks very much for your time and attention!

Questions/comments???

Sustainability considerations on energy harvesting materials research

system boundary defined for the LCA of two thermoelectric modules.

*ALL INFORMATION SHALL BE CONSIDERED SPEAKER PROPERTY UNLESS OTHERWISE SUPERSEDED BY ANOTHER DOCUMENT.*Roadmap on energy harvesting materials, sect. 7, V. Pecunia et al. J. Phys. Mater. 6 (2023) 042501

III–V compound semiconductors for indoor photovoltaics

- \bullet PCEs > 20% have been reported for AlGaAs
- •PCEs >30% for InGaP
- • Cost-effective approaches to realize III–V photovoltaics are a current research challenge but different from large area PV

Calculated max efficiency versus bandgap energy for photovoltaic cells under AM1.5 and white light-emitting-diode illumination.

Roadmap on energy harvesting materials, sect. 2.2, J.D. Phillips, in V. Pecunia et al. J. Phys. Mater. 6 (2023) 042501

OPV for indoor photovoltaics

 Control of the chemical structure of molecules allows for tailoring of optoelectronic properties to match spectrum. High Voc.

- •PCEs ≥ 25% at 1000 lx.
- • Cost-effective deposition via coating & printing techniques

Roadmap on energy harvesting materials, sect. 2.2, G,.C. Welch et al., in V. Pecunia et al. J. Phys. Mater. 6 (2023) 042501

Dye Sensitized Solar Cells for indoor photovoltaics

https://pubs.rsc.org/en/content/articlelanding/2020/sc/c9sc06145b

- • PCE of 28.9% reached at 1000 lx [Cu(tmby)2]2+/1+ redox coupled with TiO₂ films co-sensitized with the dye D35 and XY1
- • panchromatic dyes, alternative hole transport materials 13% under AM1.5G conditions and 34% under indoor light.
- • Cost-effective deposition via coating & printing techniques; questions about electrolyte use.

Perovskite Photovoltaic Cells for Indoors

- •Much higher efficiency indoors
- •Performance indoors more sensitive to film & interface quality

F. Di Giacomo, Nano Energy 30, 460 (2016)

Perovskite Photovoltaic Cells for Indoors

- •Much higher efficiency indoors
- •Performance indoors more sensitive to film & interface quality

F. Di Giacomo, Nano Energy 30, 460 (2016)

III–V compound semiconductors for indoor photovoltaics

Fujikura Technical Review, 2013. F. De Rossi et al., Applied Energy, 2015, 156, 413.

Why look at the status of energy harvesting materials?

• Emerging photovoltaic materials have the potential to facilitate cheaper, eco-friendlier, and lighter photovoltaics, fostering broader deployment $\;\rightarrow$ cheaper, more abundant clean electricity

ALL INFORMATION SHALL BE CONSIDERED SPEAKER PROPERTY UNLESS OTHERWISE SUPERSEDED BY ANOTHER DOCUMENT.

Publishing

JPhys Materials

physicsworld

21

SFL

Prof. V. Pecunia