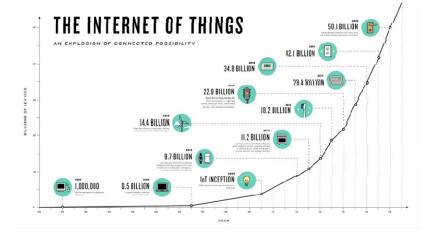


EnerHarv 2024 Workshop:

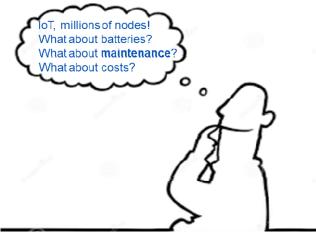
Enabling the Future of Massive IoT: Overcoming Integration Challenges for Maintenance-Free Wireless Sensor Nodes

Presented By: Roberto La Rosa ORGANIZER **INNOITALY** 25MA Founder INNOITALY roberto.larosa@innoitaly.com SPONSORS W2POWER Friday, June 28, 2024

Rodo's Power Systems

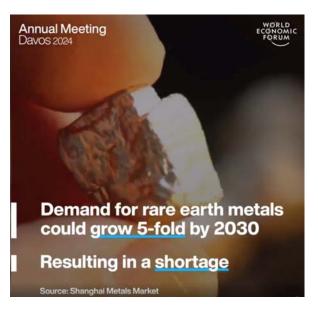

OVERVIEW

- System Integration Challenges
- **Cost Considerations for Massive Deployment**
- Maintenance-Free as a Catalyst for IoT Growth
- Practical Use Cases



Massive IoT: challenges and opportunities

'The global smart sensor market size is expected to grow from USD 36.6 billion in 2020 to USD 87.6 billion by 2025, at a CAGR of 19.0%' "For every trillion nodes installed, 274 million batteries would need to be replaced every day, even in the best-case where batteries reach their 10-year life expectancy."



The main problem with traditional electronics: sustainability x3 | social, ecological, economic

The IoT and sensors business generate a huge amount of electronic waste.

More than 30 billions of primary batteries are thrown away every year as a result.

And this number is going to increase.

At the expected growth rate of electronics, **there will be raw materials shortage by 2030**.

This will result in a **significant production cost increase for traditional electronics**.

This is why the time is now for moving forward and overcoming the current electronics sustainability issues and dependencies.

DERED SPEAKER PROPERTY UNLESS OTHERWISE SUPERSEDED BY ANOTHER DOCUMENT.

System Integration Challenges

1. Sensors

.2° life electronics .Printed circuits

.battery-less

. . .

2024

2. Energy harvesting

.Solar cells Microbial Fuel Cells Vibrations

.Temperature differential .Ammonia NH₃ .Air/soil temperature .Air/soil Humidity .Air pressure $.CO_{2}$.cloud .Soil pHBLE 6. Sustainability level .Recyclable or compostable case

3. Data processing

with embedded AI .no data processing

4. Data transmission

.LoRa .LEO satellites

5. Data storage and distribution

ALL INFORMATION SHALL BE CO ESS OTHERWISE SUPERSEDED BY ANOTHER DOCUMENT.

INNOITAL

System Integration Challenges

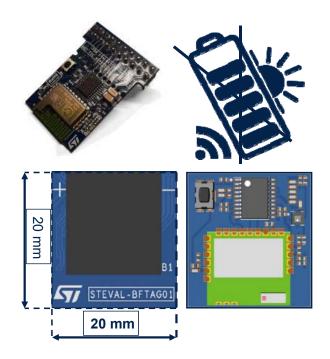
Problem	Solution
Huge Number of Wireless Sensor Nodes	Co-Design
Requirements	Key features
 Maintenance-free Wire mitigation Low-cost Compact form factor End of life / Recyclability Easy to Use 	 Energy autonomous Wireless communication Design Optimization / Co-Design Energy Efficiency Sustainable Materials Set-and-forget device

Maintenance-Free Wireless Sensor Platform

Highlights

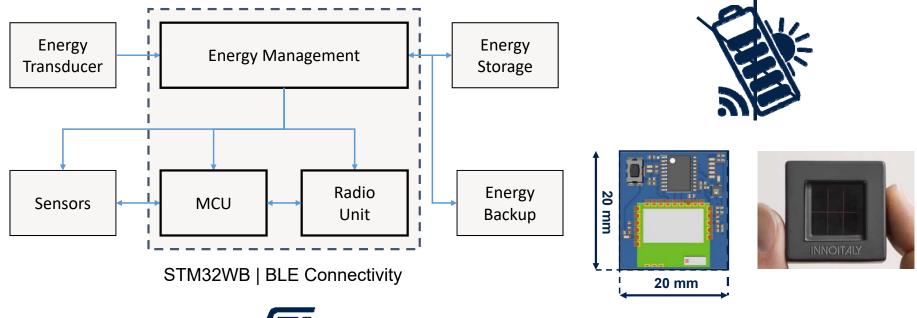
- Energy-autonomous device
- Sensor-free light monitor
- Relative humidity and temperature monitor

Features


- Small form factor
- Bluetooth Low Energy (BLE) connectivity
- Low-cost solution
- Digital read out

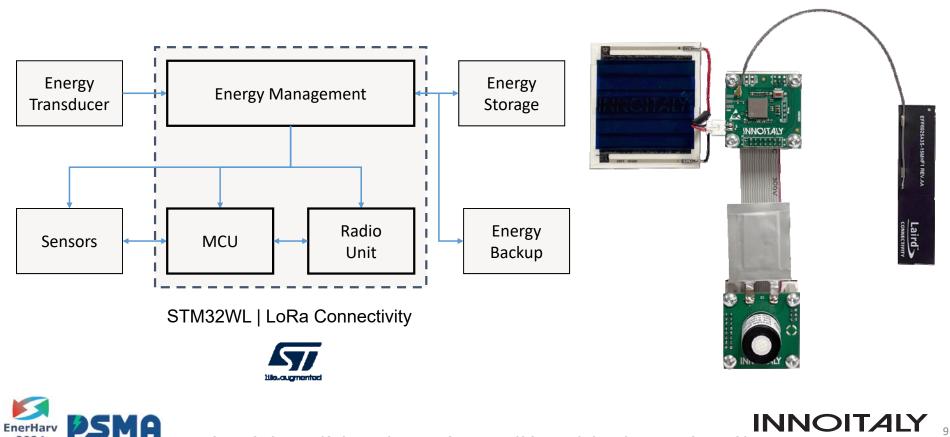
Applications

- Ambient light monitoring
- Predictive maintenance
- Asset tracking

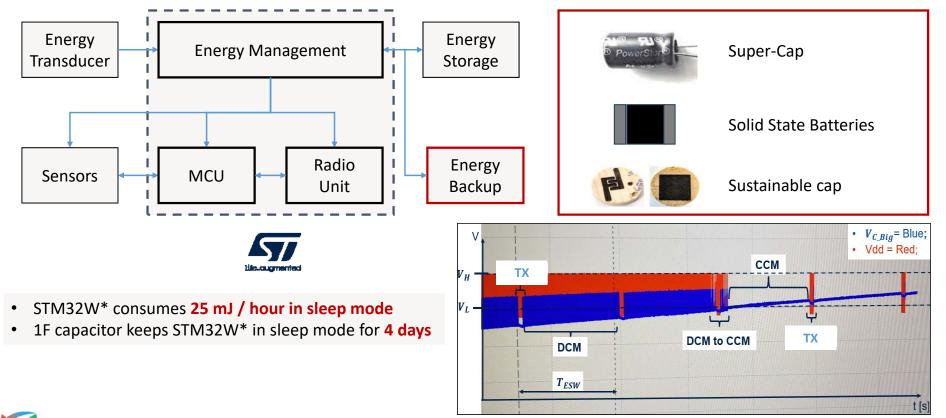

How it works:

- It sends several beacons proportioned to the intensity of ambient light
- Self-powered by energy harvesting, e.g. a small solar panel

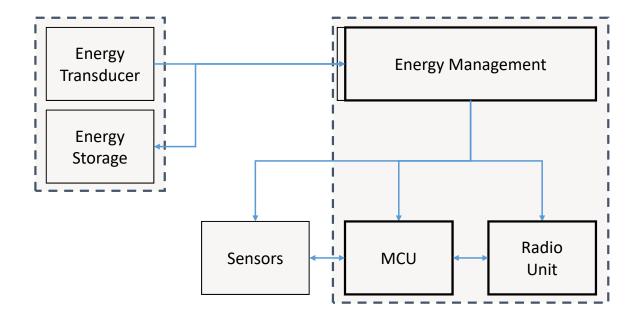
Maintenance-Free Wireless Sensor Node



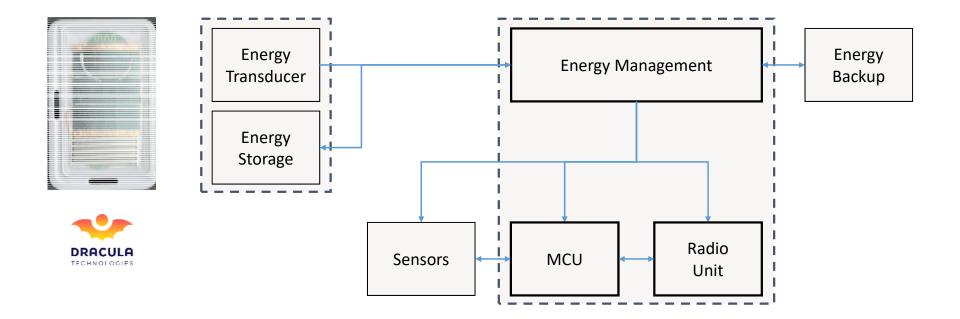
INNOITALY


Maintenance-Free Wireless Sensor Node

ALL INFORMATION SHALL BE CONSIDE KER PROPERTY UNLESS OTHERWISE SUPERSEDED BY ANOTHER DOCUMENT.

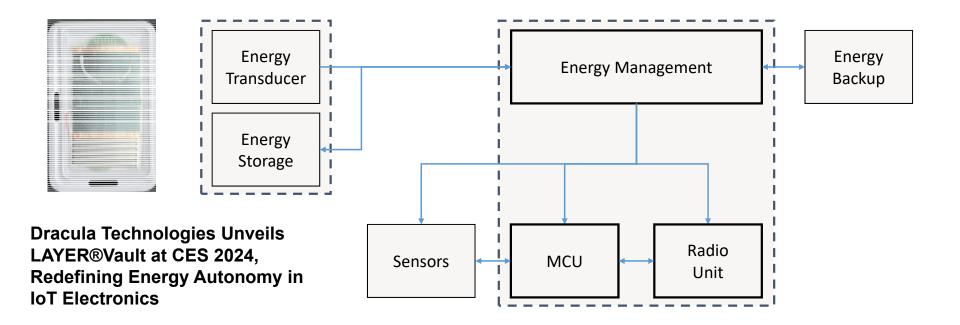

2024

Maintenance-free Wireless Sensor Node

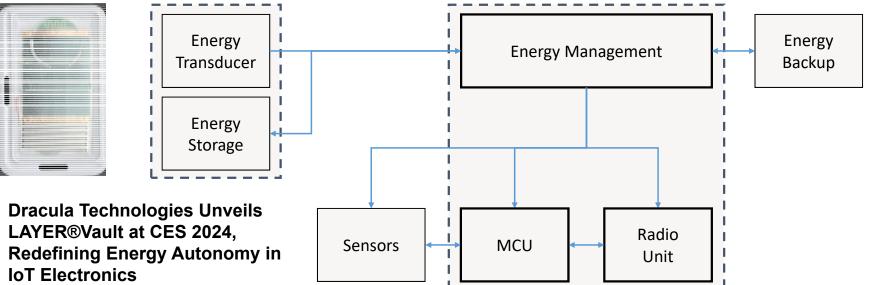


ALL INFORMATION SHALL BE CONSIDERED SPEAKER PROPERTY UNLESS OTHERWISE SUPERSEDED BY ANOTHER DOCUMENT.

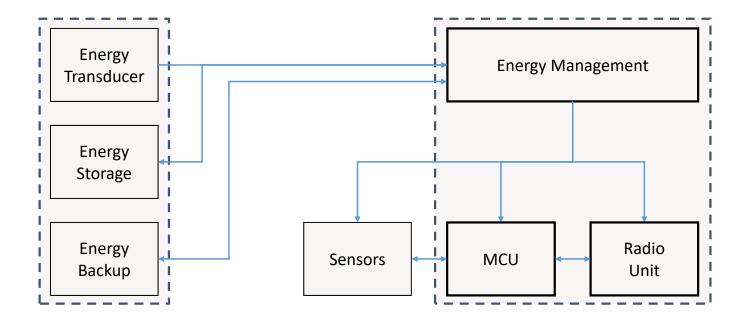
2024



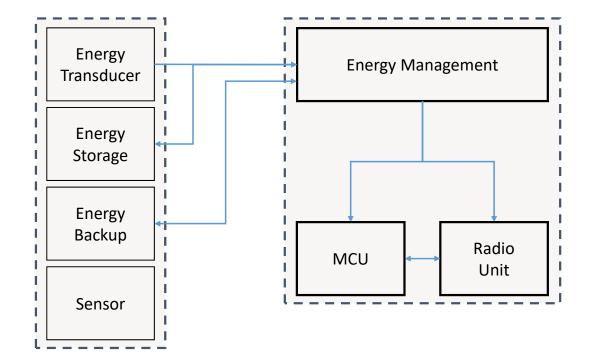
INNOITALY 1



INNOITALY

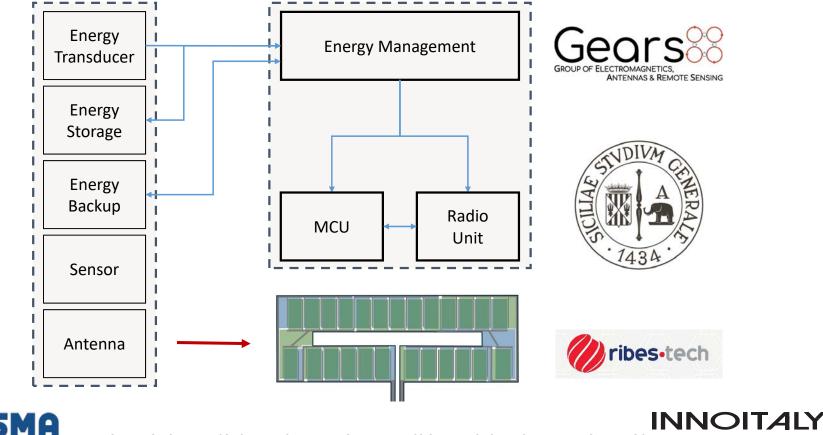

•

2024



Significantly Reduce the Total Cost of Ownership of your IoT Solution with LAYER®.

INNOITAL



INNOITALY

ALL INFORMATION SHALL BE CONSIDERED SPEAKER PROPERTY UNLESS OTHERWISE SUPERSEDED BY ANOTHER DOCUMENT.

EnerHarv 2024

17

Energy-independent sensor platform

Sector	Home automationOutdoor automationHome gardening
Main features	 360° solar cell dome Battery-Free BLE LoRa data transmission
Collected data	Air humidityTemperatureLight Intensity
Added value	Maintenance-freeIdeal for expansive WSN Deployments

INNOITALY

Solution for Preserving Precious Artworks

 Main features 360° solar cell dome Battery-Free BLE & LoRa data transmission Air humidity Temperature Light Intensity Inclination Presence Maintenance-free 	Sector	Home automationIndoor automationMuseum automation
 Collected data Temperature Light Intensity Inclination Presence Maintenance-free 	Main features	Battery-Free
Maintenance-free		TemperatureLight IntensityInclination
Ideal for expansive WSN deployments	Added value	

ALL INFORMATION SHALL BE CONSIDERED SPEAKER PROPERTY UNLESS OTHERWISE SUPERSEDED BY ANOTHER DOCUMENT.

INNOITAL

Energy-independent sensors with Microbial Fuel Cell

Sector	
Sector	

AgritechFarm

Home gardening

Energy-Autonomous

Main features •

Collected data

- Battery-Free (Co-Harvesting Solar Cell + PMFC)BLE & LoRa
- Air humidity
- Temperature
- Soil humidity | temperature | pH
- Light Intensity

Added value

- Maintenance-free
- · Ideal for expansive WSN deployments

EnerHarv 2024

INNOITALY

Conclusions

- Energy Harvesting enables Massive IoT
- Massive IoT applications are cost sensitive
- System Integration needs off-the-shelf devices
- Co-design can help reducing integration costs
- Needed more variety in off-the-shelf transducers
- Yet not a lot available on the market beyond photovoltaic

Q & A

Thanks very much for your time and attention!

Questions/comments???

References

- https://www.innoitaly.com/
- https://www.st.com/resource/en/flyer/flstm32wl.pdf
- https://dracula-technologies.com/layer-vault/
- La Rosa, Roberto, et al. "An Energy-Autonomous and Maintenance-Free Wireless Sensor Platform with LoRa Connectivity." 2023 12th International Conference on Renewable Energy Research and Applications (ICRERA). IEEE, 2023.
- La Rosa, Roberto, et al. "An energy autonomous and battery-free measurement system for ambient light power with time domain readout." *Measurement* 186 (2021): 110158.
- La Rosa, Roberto, et al. "A Self-powered Ambient Light Power Measurement Platform with Timedomain Readout." 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE, 2021.
- La Rosa, Roberto, et al. "Strategies and techniques for powering wireless sensor nodes through energy harvesting and wireless power transfer." *Sensors* 19.12 (2019): 2660.

