

EnerHarv 2024 Workshop: System level considerations enable energy harvesting component optimisation

Dr. Maeve Duffy, Associate Professor

Power Electronics Research Centre,

SPONSORS

Bodo S Power Systems

OLLSCOIL NA GAILLIMHE UNIVERSITY OF GALWAY

^{HE} University of Galway maeve.duffy@universityofgalway.ie TECHNICAL SPONSORS

Friday, June 28, 2024

OVERVIEW

🔯 Electromagnetic generator system design

- Coil optimisation
- Impact of diode characteristics
- Impact of load impedance

🔯 Dye sensitized solar cell (DSSC) system design

- Cell structure optimization
- Combined DSSC DC/DC converter optimisation
- **Energy storage considerations**

OLLSCOIL NA GAIL **UNIVERSITY OF GALWA**

Electromagnetic generator design: sliding magnet [1]

SH RESEARCH COUNCIL Chomhairle um Thaighde in Éirinn

2024

Optimum coil length for a given magnet

Equal to the extent of the magnetic flux gradient

Electromagnetic generator design: optimisation

- Optimum magnet, d_m : coil diameter, do_c, within a given space
- Optimum number and combination of coils

Electromagnetic generator design: AC/DC considerations

🔯 Choice of diode

- Lowest V_{FWD} not the only factor
- Reverse leakage current has significant contribution

Diode	Reverse	Reverse	Forward	Forward
Туре	Current	Voltage	Current	Voltage mV
	Typ - Max:	(V)	(mA)	(I _F = 0.1mA -
				1000mA)
PMEG201	15 – 40 μA	20	0.1- 1000	Тур: 90 – 420
0EH	at 10 V		0.1 -1000	Max: 130 – 500
PMEG102	1.2 – 3 mA	10	2000	Тур: 100 – 350
0EH	at 10 V			Max: 130 – 460

Electromagnetic generator design: rectified DC output

Higher power achieved with parallel vs. series coils, but at lower voltages

Electromagnetic generator design: pulsed DC output

Higher power and energy achieved with series alternating coils! 0

IDERED SPEAKER PROPERTY UNLESS OTHERWISE SUPERSEDED BY ANOTHER DOCUMENT. ALL INFORMATION SHALL

System level DSSC design: cell configuration [2]

. 0

0.1615 cm

Sealant Layer

SH RESEARCH COUNCIL

Chomhairle um Thaighde in Éirinn

Active Area

2024

- Trade-off between output voltage and power
 - Due to space needed for interconnect

System level DSSC design: boost converter losses

- Converter losses are dependent on input voltage
 - Most losses during discharge of C_{in}
 - EH power supplies storage and load

System level DSSC design: boost converter losses

System level DSSC design: switched supercapacitor DC/DC

Combining energy storage and DC/DC converter functionality

2024

Optimised design requires close matching to load requirements

System level DSSC design: switched supercapacitor DC/DC

- Demonstator LoRA sensor load
 - 0.4 V DSSC input
 - 0.487 mW input power to operate with switched supercap circuit vs. 0.559 mW for closest EH energy management IC
 - Potential for energy-aware sensor operation, by supplying enable pin with EH voltage

Conclusions

- EH source optimum voltage and power levels do not usually coincide
 - EH source needs to supply load and energy storage
- Choice of all power conversion/energy management components needs careful consideration
- Combined source/power conversion optimization provides significant improvement
 - Earlier consideration of their combination is better!
- Combined source/power conversion/load/storage optimization provides another promising route

Q & A

Thanks very much for your time and attention!

Questions/comments???

OLLSCOIL NA GAILLIMHE UNIVERSITY OF GALWAY

References

- [1] D. Carroll, *Miniaturised Electromagnetic Generators for Portable Applications*, PhD thesis, 2012, available online: <u>https://researchrepository.universityofgalway.ie/entities/publication/876ee2d2-42f2-4f99-9ded-c7c6716bba66</u>
- [2] D. Newell, Optimised energy management for energy harvesting powered wireless sensors, PhD thesis, 2019, available online: https://researchrepository.universityofgalway.ie/entities/publication/8315a4fb-060b-4046-a887-31334e20be55

