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ABSTRACT: Backscattering wireless transmitters have recently gained wide interest in view of their
low power consumption and potential for purely-harvested operation, as well as their easy
integration in wireless environments using WiFi/BLE access points. Given the power-hungry
nature of on-chip frequency synthesis in backscattering, the PLL-less WiFi transmitter
architecture reduces power to a few μW. The key goal of this work is to enable simultaneous
reuse of the incoming RF signal for backscattering communications, harvesting and sensing via 1)
further WiFi TX power reductions down to the unexplored sub-μW range for smaller, lower-cost
and truly ubiquitous communications with commodity wireless hardware, 2) RF signal
exploitation for always-on motion sensing, 3) PLL/crystal-less and oscillator-less TX architecture.

System-level description Main measurement results

Conclusions
The first sub-μW 802.11b backscattering transmitter has been presented and experimentally validated under all
process corner wafers (corners not considered in prior art). Its architecture reuses the same incident wave for RF
harvesting, backscattering communications, clock extraction and position/motion sensing. Such reuse removes
the battery, any explicit physical harvester, any power-hungry on-chip local oscillator, and off-chip motion sensor
(e.g., MEMS) for aggressive miniaturization, unrestricted device lifespan, low cost and low maintenance cost for
ubiquitous adoption.

Figure 1 – System architecture description
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The circuit includes: clock extraction from incoming two-tone
RF incident signal (top-left), backscattered transmission via
RF switch impedance modulation (top-right), sensor-less
motion detection based on harvested voltage set by distance
from PID (mid-left), 802.11b baseband processor for packet
assembly (mid-right), and harvesting (bottom) embedding a
novel crossed-NMOS Dickson charge pump.
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Figure 2 – IC microphotograph (TSMC 180nm), custom PCB, measurement setup

Figure 3 – Measurement results on 1) RF-to-DC conversion trhough the novel 3-stage 
crossed-NMOS Dickson charge pump, 2) sensor-less position sensing, 3) 11 MHz clock 

extraction accuracy and jitter, 4) trasmission of 802.11b WiFi data-packets


