

Microbattery Materials and Future Directions Neil Curtis, James Rohan

Tyndall National Institute, UCC, Ireland

james.rohan@tyndall.ie

ABSTRACT: Microbatteries have been used to power a wide range of Internet of Things devices. As energy harvesting technology improves, the possibility of incorporating rechargeable batteries becomes a reality. Developing and testing novel battery materials is typically a time-consuming task. Microelectrodes have been used in sensor applications for rapid testing. Here we have developed a nickel microelectrode disc array (MDA) which is compatible with lithium chemistries.

Microbatteries for IoT applications

Simulations of battery architectures

Company Battery model Solid state			Ilika		iTen	Cyn	ıbet	TDK	
		Stereax M50	Stereax M250 Y	Stereax M300 (stacked) Y	ITX121010B or customisable	CBC005	CBC050 Y	CeraCharge 1812 Y	
		Y			Y	Y			
Packaged		-	-	-	Surface Mount	Bare Die	Bare Die	Y	
Dimensions	Thickness (µm)	50	< 750	900	800	200	200	1100	
	Length (mm)	5.5	12	5.5	3.2	2.25	6.1	1812 Y Y 1100 4.4 3 13.2 100 1.5 low - not specified 100 5	
Dimensions	Width (mm)	3.5	12	3.5	2.5	1.7	5.7	3	
	Area (mm²)	19.25	144	19.25	8	3.825	34.77	13.2	
Rated capacity	μAh	50	250	300	100	5	50	100	
Voltage range	V	3 to 4	3.5	3 to 4	2.5	3.8	3.8	1.5	
Internal resistance(25°C)	Ω	900	120	150	low - not specified	7000	500	low - not specified	
Discharge current	μΑ	50	250	300	Customisable	5	100	100	
Peak current	mA	1	5	6	100	0.1 1		5	
Max. current continuous	mA	0.5	-	3	Customisable	0.02 0.2		0.02	
Cycle life (20–40°C)		> 400 (100% DoD to 80% capacity)	> 500 (100% DoD to 80% capacity)	> 400 (100% DoD to 80% capacity)	1000 (100% DoD to 80% capacity)	500 (50% DoD)	500 (50% DoD)	1000 (90% DoD)	

Commercial microbattery specifications and outputs

Roadmap for new large-scale battery materials

Microelectrodes for accelerated battery testing

Evaluating potential battery materials can be a timeconsuming process, due to the low conductivity of the electrode and electrolyte materials. Many materials behave poorly at high charge rates when tested with typical large electrodes. Microelectrodes allow for more rapid analysis thanks to the improved diffusion and low current which minimises (iR) resistive losses or voltage distortions during rapid cycling.

Lithium metal cycling tests

The Ni MDA were first tested in a 1M LiPF₆:EC:DEC solvent electrolyte. Lithium plating tests were carried out and successfully cycled through over 50 plating/stripping cycles at 20 mV/s. Each cycle takes 1 minute. This MDA test chip will enable a range of lithium and post-lithium battery chemistries to be tested rapidly for the introduction of new electrolytes and additives

Commercialisation				2020	2025		>2025		
Cathode	NMC/NCA LFP LMO	NMC111	NMC424 NMC523	NMC622 NMC811	HE NMC Li-rich NMC HVS	NMC	NMC	HE NMC	
Anode	Modifed Gaphite Li ₄ Ti ₅ O ₁₂	Modified Graphite	Modified Graphite	NMC910 Carbon (Graphite)+Si	Silicon/Carbon (C/Si)	Silicon/Carbon (C/Si)	Li metal		Li metal
Electrolyte	Organic LiPF6salts			(5-10%)	Organic+ Additives	-1	Solid electrolyte -Polymer (+ Additives) -Inogranic -Hybrid		
Separator	Porous Polymer Membranes								
Sou	rce: Nationale Pl	attform Elektron	nobilität, Marcel	Meeus, JRC.					
	90 to 235 Wh/kg 200 to 630 Wh/l			350 Wh/kg 750 Wh/l		500 Wh/kg 1000 Wh/l			

Summary

- Microbatteries are generally ahead (solid-state) of larger scale batteries like EV cells. New materials, architectures and processing are still required to optimise energy per unit area/volume to match with the IoT applications.
- Testing new battery materials is a time-intensive process, hindering the use of novel, sustainable battery materials
- Microelectrodes provide a method for improved electrochemical testing.
- This microelectrode array is capable of testing lithium metal plating for next generation solid state batteries, introducing the possibility for rapid battery materials testing in the future. Acknowledgements

This research was supported in part by a research grant from Science Foundation Ireland (SFI) and is co-funded by the European Regional Development Fund under grant number 13/RC/2077_P2, and by the Sustainable Energy Authority of Ireland (SEAI) grant number RDD864 (Battery Energy Storage materials and interfaces rapid analysis test kit development - BatterySense)

TECHNICAL SPONSORS

